Library GeoCoq.Axioms.beeson_s_axioms

We describe here an intuitionistic version of Tarski's axiom system proposed by Michael Beeson.

Class intuitionistic_Tarski_neutral_dimensionless := {
 ITpoint : Type;
 IBet : ITpoint ITpoint ITpoint Prop;
 ICong : ITpoint ITpoint ITpoint ITpoint Prop;
 Cong_stability : A B C D, ¬ ¬ ICong A B C D ICong A B C D;
 Bet_stability : A B C, ¬ ¬ IBet A B C IBet A B C;
 IT A B C := ¬ (AB BC ¬ IBet A B C);
 ICol A B C := ¬ (~ IT C A B ¬ IT A C B ¬ IT A B C);
 Icong_identity : A B C, ICong A B C C A = B;
 Icong_inner_transitivity : A B C D E F,
   ICong A B C D ICong A B E F ICong C D E F;
 Icong_pseudo_reflexivity : A B, ICong A B B A;
 Isegment_construction : A B C D,
    AB E, IT A B E ICong B E C D;
 Ifive_segment : A A' B B' C C' D D',
    ICong A B A' B'
    ICong B C B' C'
    ICong A D A' D'
    ICong B D B' D'
    IT A B C IT A' B' C' A B ICong C D C' D';
 Ibetween_identity : A B, ¬ IBet A B A;
 Ibetween_symmetry : A B C, IBet A B C IBet C B A;
 Ibetween_inner_transitivity : A B C D, IBet A B D IBet B C D IBet A B C;
 Iinner_pasch : A B C P Q,
   IBet A P C IBet B Q C ¬ ICol A B C
    x, IBet P x B IBet Q x A;
 PA : ITpoint;
 PB : ITpoint;
 PC : ITpoint;
 Ilower_dim : ¬ IT PC PA PB ¬ IT PA PC PB ¬ IT PA PB PC
}.