Library GeoCoq.Axioms.independent_tarski_axioms
Class independent_Tarski_neutral_dimensionless_with_decidable_point_equality := {
TpointG : Type;
BetG : TpointG → TpointG → TpointG → Prop;
CongG : TpointG → TpointG → TpointG → TpointG → Prop;
point_equality_decidabilityG : ∀ A B : TpointG, A = B ∨ ¬ A = B;
cong_pseudo_reflexivityG : ∀ A B, CongG A B B A;
cong_inner_transitivityG : ∀ A B C D E F,
CongG A B E F → CongG C D E F → CongG A B C D;
cong_identityG : ∀ A B C, CongG A B C C → A = B;
segment_constructionG : ∀ A B C D,
∃ E, BetG A B E ∧ CongG B E C D;
five_segmentG : ∀ A A' B B' C C' D D',
CongG A B A' B' → CongG B C B' C' → CongG A D A' D' → CongG B D B' D' →
BetG A B C → BetG A' B' C' → A ≠ B → CongG C D C' D';
bet_symmetryG : ∀ A B C, BetG A B C → BetG C B A;
bet_inner_transitivityG : ∀ A B C D, BetG A B D → BetG B C D → BetG A B C;
inner_paschG : ∀ A B C P Q,
BetG A P C → BetG B Q C →
A ≠ P → P ≠ C → B ≠ Q → Q ≠ C →
¬ (BetG A B C ∨ BetG B C A ∨ BetG C A B) →
∃ x, BetG P x B ∧ BetG Q x A;
GPA : TpointG;
GPB : TpointG;
GPC : TpointG;
lower_dimG : ¬ (BetG GPA GPB GPC ∨ BetG GPB GPC GPA ∨ BetG GPC GPA GPB)
}.
Class independent_Tarski_2D `(TnG : independent_Tarski_neutral_dimensionless_with_decidable_point_equality) := {
upper_dimG : ∀ A B C P Q,
P ≠ Q → A ≠ B → A ≠ C → B ≠ C →
CongG A P A Q → CongG B P B Q → CongG C P C Q →
(BetG A B C ∨ BetG B C A ∨ BetG C A B)
}.
Class independent_Tarski_2D_euclidean `(T2DG : independent_Tarski_2D) := {
euclidG : ∀ A B C D T,
BetG A D T → BetG B D C →
B ≠ D → D ≠ C →
¬ (BetG A B C ∨ BetG B C A ∨ BetG C A B) →
∃ x, ∃ y, BetG A B x ∧ BetG A C y ∧ BetG x T y
}.
TpointG : Type;
BetG : TpointG → TpointG → TpointG → Prop;
CongG : TpointG → TpointG → TpointG → TpointG → Prop;
point_equality_decidabilityG : ∀ A B : TpointG, A = B ∨ ¬ A = B;
cong_pseudo_reflexivityG : ∀ A B, CongG A B B A;
cong_inner_transitivityG : ∀ A B C D E F,
CongG A B E F → CongG C D E F → CongG A B C D;
cong_identityG : ∀ A B C, CongG A B C C → A = B;
segment_constructionG : ∀ A B C D,
∃ E, BetG A B E ∧ CongG B E C D;
five_segmentG : ∀ A A' B B' C C' D D',
CongG A B A' B' → CongG B C B' C' → CongG A D A' D' → CongG B D B' D' →
BetG A B C → BetG A' B' C' → A ≠ B → CongG C D C' D';
bet_symmetryG : ∀ A B C, BetG A B C → BetG C B A;
bet_inner_transitivityG : ∀ A B C D, BetG A B D → BetG B C D → BetG A B C;
inner_paschG : ∀ A B C P Q,
BetG A P C → BetG B Q C →
A ≠ P → P ≠ C → B ≠ Q → Q ≠ C →
¬ (BetG A B C ∨ BetG B C A ∨ BetG C A B) →
∃ x, BetG P x B ∧ BetG Q x A;
GPA : TpointG;
GPB : TpointG;
GPC : TpointG;
lower_dimG : ¬ (BetG GPA GPB GPC ∨ BetG GPB GPC GPA ∨ BetG GPC GPA GPB)
}.
Class independent_Tarski_2D `(TnG : independent_Tarski_neutral_dimensionless_with_decidable_point_equality) := {
upper_dimG : ∀ A B C P Q,
P ≠ Q → A ≠ B → A ≠ C → B ≠ C →
CongG A P A Q → CongG B P B Q → CongG C P C Q →
(BetG A B C ∨ BetG B C A ∨ BetG C A B)
}.
Class independent_Tarski_2D_euclidean `(T2DG : independent_Tarski_2D) := {
euclidG : ∀ A B C D T,
BetG A D T → BetG B D C →
B ≠ D → D ≠ C →
¬ (BetG A B C ∨ BetG B C A ∨ BetG C A B) →
∃ x, ∃ y, BetG A B x ∧ BetG A C y ∧ BetG x T y
}.