Library GeoCoq.Axioms.tarski_axioms
This version of the axioms of Tarski is the one given in
Wolfram Schwabhäuser, Wanda Szmielew and Alfred Tarski,
Metamathematische Methoden in der Geometrie, Springer-Verlag, Berlin, 1983.
This axioms system is the result of a long history of axiom systems for geometry studied by
Tarski, Schwabhäuser, Szmielew and Gupta.
Class Tarski_neutral_dimensionless :=
{
Tpoint : Type;
Bet : Tpoint → Tpoint → Tpoint → Prop;
Cong : Tpoint → Tpoint → Tpoint → Tpoint → Prop;
cong_pseudo_reflexivity : ∀ A B, Cong A B B A;
cong_inner_transitivity : ∀ A B C D E F,
Cong A B C D → Cong A B E F → Cong C D E F;
cong_identity : ∀ A B C, Cong A B C C → A = B;
segment_construction : ∀ A B C D,
∃ E, Bet A B E ∧ Cong B E C D;
five_segment : ∀ A A' B B' C C' D D',
Cong A B A' B' →
Cong B C B' C' →
Cong A D A' D' →
Cong B D B' D' →
Bet A B C → Bet A' B' C' → A ≠ B → Cong C D C' D';
between_identity : ∀ A B, Bet A B A → A = B;
inner_pasch : ∀ A B C P Q,
Bet A P C → Bet B Q C →
∃ X, Bet P X B ∧ Bet Q X A;
PA : Tpoint;
PB : Tpoint;
PC : Tpoint;
lower_dim : ¬ (Bet PA PB PC ∨ Bet PB PC PA ∨ Bet PC PA PB)
}.
Class Tarski_neutral_dimensionless_with_decidable_point_equality
`(Tn : Tarski_neutral_dimensionless) :=
{
point_equality_decidability : ∀ A B : Tpoint, A = B ∨ ¬ A = B
}.
Class Tarski_2D
`(TnEQD : Tarski_neutral_dimensionless_with_decidable_point_equality) :=
{
upper_dim : ∀ A B C P Q,
P ≠ Q → Cong A P A Q → Cong B P B Q → Cong C P C Q →
(Bet A B C ∨ Bet B C A ∨ Bet C A B)
}.
Class Tarski_2D_euclidean `(T2D : Tarski_2D) :=
{
euclid : ∀ A B C D T,
Bet A D T → Bet B D C → A≠D →
∃ X, ∃ Y,
Bet A B X ∧ Bet A C Y ∧ Bet X T Y
}.