Library GeoCoq.Elements.OriginalProofs.euclidean_defs
Require Export GeoCoq.Axioms.euclidean_axioms.
Section Definitions.
Context `{Ax:euclidean_neutral}.
Definition Out A B C := ∃ X, BetS X A C ∧ BetS X A B.
Definition Lt A B C D := ∃ X, BetS C X D ∧ Cong C X A B.
Definition Midpoint A B C := BetS A B C ∧ Cong A B B C.
Definition CongA A B C a b c := ∃ U V u v, Out B A U ∧ Out B C V ∧ Out b a u ∧ Out b c v ∧ Cong B U b u ∧ Cong B V b v ∧ Cong U V u v ∧ nCol A B C.
Definition AdjacentAngle A B C D E F := eq B E ∧ BetS A B F ∧ Out B D C.
Definition VA A B C D E F := eq B E ∧ BetS A B D ∧ BetS C B F.
Definition Supp A B C D F := Out B C D ∧ BetS A B F.
Definition Per A B C := ∃ X, BetS A B X ∧ Cong A B X B ∧ Cong A C X C ∧ neq B C.
Definition Perp_at P Q A B C := ∃ X, Col P Q C ∧ Col A B C ∧ Col A B X ∧ Per X C P.
Definition Perp P Q A B := ∃ X, Perp_at P Q A B X.
Definition InAngle A B C P := ∃ X Y, Out B A X ∧ Out B C Y ∧ BetS X P Y.
Definition OS P Q A B := ∃ X U V, Col A B U ∧ Col A B V ∧ BetS P U X ∧ BetS Q V X ∧ nCol A B P ∧ nCol A B Q.
Definition IO A B C D := BetS A B C ∧ BetS A B D ∧ BetS A C D ∧ BetS B C D.
Definition isosceles A B C := Triangle A B C ∧ Cong A B A C.
Definition Cut A B C D E := BetS A E B ∧ BetS C E D ∧ nCol A B C ∧ nCol A B D.
Definition LtA A B C D E F := ∃ U X V, BetS U X V ∧ Out E D U ∧ Out E F V ∧ CongA A B C D E X.
Definition TG A B C D E F := ∃ X, BetS A B X ∧ Cong B X C D ∧ Lt E F A X.
Definition TT A B C D E F G H := ∃ X, BetS E F X ∧ Cong F X G H ∧ TG A B C D E X.
Definition RT A B C D E F := ∃ X Y Z U V, Supp X Y U V Z ∧ CongA A B C X Y U ∧ CongA D E F V Y Z.
Definition Meet A B C D := ∃ X, neq A B ∧ neq C D ∧ Col A B X ∧ Col C D X.
Definition CR A B C D := ∃ X, BetS A X B ∧ BetS C X D.
Definition TP A B C D := neq A B ∧ neq C D ∧ ¬ Meet A B C D ∧ OS C D A B.
Definition Par A B C D := ∃ U V u v X, neq A B ∧ neq C D ∧ Col A B U ∧ Col A B V ∧ neq U V ∧ Col C D u ∧ Col C D v ∧ neq u v ∧ ¬ Meet A B C D ∧ BetS U X v ∧ BetS u X V.
Definition SumA A B C D E F P Q R := ∃ X, CongA A B C P Q X ∧ CongA D E F X Q R ∧ BetS P X R.
Definition PG A B C D := Par A B C D ∧ Par A D B C.
Definition SQ A B C D := Cong A B C D ∧ Cong A B B C ∧ Cong A B D A ∧ Per D A B ∧ Per A B C ∧ Per B C D ∧ Per C D A.
Definition RE A B C D := Per D A B ∧ Per A B C ∧ Per B C D ∧ Per C D A ∧ CR A C B D.
Definition RC A B C D a b c d := RE A B C D ∧ RE a b c d ∧ Cong A B a b ∧ Cong B C b c.
Definition ER A B C D a b c d := ∃ X Y Z U x z u w W, RC A B C D X Y Z U ∧ RC a b c d x Y z u ∧ BetS x Y Z ∧ BetS X Y z ∧ BetS W U w.
Definition equilateral A B C := Cong A B B C ∧ Cong B C C A.
End Definitions.
Section Definitions.
Context `{Ax:euclidean_neutral}.
Definition Out A B C := ∃ X, BetS X A C ∧ BetS X A B.
Definition Lt A B C D := ∃ X, BetS C X D ∧ Cong C X A B.
Definition Midpoint A B C := BetS A B C ∧ Cong A B B C.
Definition CongA A B C a b c := ∃ U V u v, Out B A U ∧ Out B C V ∧ Out b a u ∧ Out b c v ∧ Cong B U b u ∧ Cong B V b v ∧ Cong U V u v ∧ nCol A B C.
Definition AdjacentAngle A B C D E F := eq B E ∧ BetS A B F ∧ Out B D C.
Definition VA A B C D E F := eq B E ∧ BetS A B D ∧ BetS C B F.
Definition Supp A B C D F := Out B C D ∧ BetS A B F.
Definition Per A B C := ∃ X, BetS A B X ∧ Cong A B X B ∧ Cong A C X C ∧ neq B C.
Definition Perp_at P Q A B C := ∃ X, Col P Q C ∧ Col A B C ∧ Col A B X ∧ Per X C P.
Definition Perp P Q A B := ∃ X, Perp_at P Q A B X.
Definition InAngle A B C P := ∃ X Y, Out B A X ∧ Out B C Y ∧ BetS X P Y.
Definition OS P Q A B := ∃ X U V, Col A B U ∧ Col A B V ∧ BetS P U X ∧ BetS Q V X ∧ nCol A B P ∧ nCol A B Q.
Definition IO A B C D := BetS A B C ∧ BetS A B D ∧ BetS A C D ∧ BetS B C D.
Definition isosceles A B C := Triangle A B C ∧ Cong A B A C.
Definition Cut A B C D E := BetS A E B ∧ BetS C E D ∧ nCol A B C ∧ nCol A B D.
Definition LtA A B C D E F := ∃ U X V, BetS U X V ∧ Out E D U ∧ Out E F V ∧ CongA A B C D E X.
Definition TG A B C D E F := ∃ X, BetS A B X ∧ Cong B X C D ∧ Lt E F A X.
Definition TT A B C D E F G H := ∃ X, BetS E F X ∧ Cong F X G H ∧ TG A B C D E X.
Definition RT A B C D E F := ∃ X Y Z U V, Supp X Y U V Z ∧ CongA A B C X Y U ∧ CongA D E F V Y Z.
Definition Meet A B C D := ∃ X, neq A B ∧ neq C D ∧ Col A B X ∧ Col C D X.
Definition CR A B C D := ∃ X, BetS A X B ∧ BetS C X D.
Definition TP A B C D := neq A B ∧ neq C D ∧ ¬ Meet A B C D ∧ OS C D A B.
Definition Par A B C D := ∃ U V u v X, neq A B ∧ neq C D ∧ Col A B U ∧ Col A B V ∧ neq U V ∧ Col C D u ∧ Col C D v ∧ neq u v ∧ ¬ Meet A B C D ∧ BetS U X v ∧ BetS u X V.
Definition SumA A B C D E F P Q R := ∃ X, CongA A B C P Q X ∧ CongA D E F X Q R ∧ BetS P X R.
Definition PG A B C D := Par A B C D ∧ Par A D B C.
Definition SQ A B C D := Cong A B C D ∧ Cong A B B C ∧ Cong A B D A ∧ Per D A B ∧ Per A B C ∧ Per B C D ∧ Per C D A.
Definition RE A B C D := Per D A B ∧ Per A B C ∧ Per B C D ∧ Per C D A ∧ CR A C B D.
Definition RC A B C D a b c d := RE A B C D ∧ RE a b c d ∧ Cong A B a b ∧ Cong B C b c.
Definition ER A B C D a b c d := ∃ X Y Z U x z u w W, RC A B C D X Y Z U ∧ RC a b c d x Y z u ∧ BetS x Y Z ∧ BetS X Y z ∧ BetS W U w.
Definition equilateral A B C := Cong A B B C ∧ Cong B C C A.
End Definitions.