Library GeoCoq.Elements.OriginalProofs.lemma_3_5b
Require Export GeoCoq.Elements.OriginalProofs.lemma_3_7a.
Section Euclid.
Context `{Ax:euclidean_neutral}.
Lemma lemma_3_5b :
∀ A B C D,
BetS A B D → BetS B C D →
BetS A C D.
Proof.
intros.
assert (BetS A B C) by (conclude axiom_innertransitivity).
assert (BetS A C D) by (conclude lemma_3_7a).
close.
Qed.
End Euclid.
Section Euclid.
Context `{Ax:euclidean_neutral}.
Lemma lemma_3_5b :
∀ A B C D,
BetS A B D → BetS B C D →
BetS A C D.
Proof.
intros.
assert (BetS A B C) by (conclude axiom_innertransitivity).
assert (BetS A C D) by (conclude lemma_3_7a).
close.
Qed.
End Euclid.