Library GeoCoq.Elements.OriginalProofs.lemma_3_6a
Require Export GeoCoq.Elements.OriginalProofs.euclidean_tactics.
Section Euclid.
Context `{Ax:euclidean_neutral}.
Lemma lemma_3_6a :
∀ A B C D,
BetS A B C → BetS A C D →
BetS B C D.
Proof.
intros.
assert (BetS C B A) by (conclude axiom_betweennesssymmetry).
assert (BetS D C A) by (conclude axiom_betweennesssymmetry).
assert (BetS D C B) by (conclude axiom_innertransitivity).
assert (BetS B C D) by (conclude axiom_betweennesssymmetry).
close.
Qed.
End Euclid.
Section Euclid.
Context `{Ax:euclidean_neutral}.
Lemma lemma_3_6a :
∀ A B C D,
BetS A B C → BetS A C D →
BetS B C D.
Proof.
intros.
assert (BetS C B A) by (conclude axiom_betweennesssymmetry).
assert (BetS D C A) by (conclude axiom_betweennesssymmetry).
assert (BetS D C B) by (conclude axiom_innertransitivity).
assert (BetS B C D) by (conclude axiom_betweennesssymmetry).
close.
Qed.
End Euclid.