Library GeoCoq.Elements.OriginalProofs.lemma_NCdistinct
Require Export GeoCoq.Elements.OriginalProofs.lemma_inequalitysymmetric.
Section Euclid.
Context `{Ax1:euclidean_neutral}.
Lemma lemma_NCdistinct :
∀ A B C,
nCol A B C →
neq A B ∧ neq B C ∧ neq A C ∧ neq B A ∧ neq C B ∧ neq C A.
Proof.
intros.
assert (¬ eq A B).
{
intro.
assert (Col A B C) by (conclude_def Col ).
contradict.
}
assert (neq B A) by (conclude lemma_inequalitysymmetric).
assert (¬ eq A C).
{
intro.
assert (Col A B C) by (conclude_def Col ).
contradict.
}
assert (neq C A) by (conclude lemma_inequalitysymmetric).
assert (¬ eq B C).
{
intro.
assert (Col A B C) by (conclude_def Col ).
contradict.
}
assert (neq C B) by (conclude lemma_inequalitysymmetric).
close.
Qed.
End Euclid.
Section Euclid.
Context `{Ax1:euclidean_neutral}.
Lemma lemma_NCdistinct :
∀ A B C,
nCol A B C →
neq A B ∧ neq B C ∧ neq A C ∧ neq B A ∧ neq C B ∧ neq C A.
Proof.
intros.
assert (¬ eq A B).
{
intro.
assert (Col A B C) by (conclude_def Col ).
contradict.
}
assert (neq B A) by (conclude lemma_inequalitysymmetric).
assert (¬ eq A C).
{
intro.
assert (Col A B C) by (conclude_def Col ).
contradict.
}
assert (neq C A) by (conclude lemma_inequalitysymmetric).
assert (¬ eq B C).
{
intro.
assert (Col A B C) by (conclude_def Col ).
contradict.
}
assert (neq C B) by (conclude lemma_inequalitysymmetric).
close.
Qed.
End Euclid.