Library GeoCoq.Elements.OriginalProofs.lemma_TCreflexive
Require Export GeoCoq.Elements.OriginalProofs.euclidean_tactics.
Section Euclid.
Context `{Ax:euclidean_neutral}.
Lemma lemma_TCreflexive :
∀ A B C,
Triangle A B C →
Cong_3 A B C A B C.
Proof.
intros.
assert (nCol A B C) by (conclude_def Triangle ).
assert (Cong A B A B) by (conclude cn_congruencereflexive).
assert (Cong B C B C) by (conclude cn_congruencereflexive).
assert (Cong A C A C) by (conclude cn_congruencereflexive).
assert (Cong_3 A B C A B C) by (conclude_def Cong_3 ).
close.
Qed.
End Euclid.
Section Euclid.
Context `{Ax:euclidean_neutral}.
Lemma lemma_TCreflexive :
∀ A B C,
Triangle A B C →
Cong_3 A B C A B C.
Proof.
intros.
assert (nCol A B C) by (conclude_def Triangle ).
assert (Cong A B A B) by (conclude cn_congruencereflexive).
assert (Cong B C B C) by (conclude cn_congruencereflexive).
assert (Cong A C A C) by (conclude cn_congruencereflexive).
assert (Cong_3 A B C A B C) by (conclude_def Cong_3 ).
close.
Qed.
End Euclid.