Library GeoCoq.Elements.OriginalProofs.lemma_collinear5
Require Export GeoCoq.Elements.OriginalProofs.lemma_collinear4.
Section Euclid.
Context `{Ax:euclidean_neutral}.
Lemma lemma_collinear5 :
∀ A B C D E,
neq A B → neq C D → Col A B C → Col A B D → Col A B E →
Col C D E.
Proof.
intros.
assert (Col B C D) by (conclude lemma_collinear4).
assert (Col B C E) by (conclude lemma_collinear4).
assert (Col C D E).
by cases on (neq B C ∨ eq B C).
{
assert (Col C D E) by (conclude lemma_collinear4).
close.
}
{
assert (Col B D E) by (conclude lemma_collinear4).
assert (Col C D E) by (conclude cn_equalitysub).
close.
}
close.
Qed.
End Euclid.
Section Euclid.
Context `{Ax:euclidean_neutral}.
Lemma lemma_collinear5 :
∀ A B C D E,
neq A B → neq C D → Col A B C → Col A B D → Col A B E →
Col C D E.
Proof.
intros.
assert (Col B C D) by (conclude lemma_collinear4).
assert (Col B C E) by (conclude lemma_collinear4).
assert (Col C D E).
by cases on (neq B C ∨ eq B C).
{
assert (Col C D E) by (conclude lemma_collinear4).
close.
}
{
assert (Col B D E) by (conclude lemma_collinear4).
assert (Col C D E) by (conclude cn_equalitysub).
close.
}
close.
Qed.
End Euclid.