Library GeoCoq.Elements.OriginalProofs.lemma_collinearorder
Require Export GeoCoq.Elements.OriginalProofs.lemma_collinear2.
Require Export GeoCoq.Elements.OriginalProofs.lemma_collinear1.
Section Euclid.
Context `{Ax1:euclidean_neutral}.
Lemma lemma_collinearorder :
∀ A B C,
Col A B C →
Col B A C ∧ Col B C A ∧ Col C A B ∧ Col A C B ∧ Col C B A.
Proof.
intros.
assert (Col B C A) by (conclude lemma_collinear2).
assert (Col C A B) by (conclude lemma_collinear2).
assert (Col B A C) by (conclude lemma_collinear1).
assert (Col A C B) by (conclude lemma_collinear2).
assert (Col C B A) by (conclude lemma_collinear2).
close.
Qed.
End Euclid.
Require Export GeoCoq.Elements.OriginalProofs.lemma_collinear1.
Section Euclid.
Context `{Ax1:euclidean_neutral}.
Lemma lemma_collinearorder :
∀ A B C,
Col A B C →
Col B A C ∧ Col B C A ∧ Col C A B ∧ Col A C B ∧ Col C B A.
Proof.
intros.
assert (Col B C A) by (conclude lemma_collinear2).
assert (Col C A B) by (conclude lemma_collinear2).
assert (Col B A C) by (conclude lemma_collinear1).
assert (Col A C B) by (conclude lemma_collinear2).
assert (Col C B A) by (conclude lemma_collinear2).
close.
Qed.
End Euclid.