Library GeoCoq.Elements.OriginalProofs.lemma_congruencesymmetric
Require Export GeoCoq.Elements.OriginalProofs.euclidean_tactics.
Section Euclid.
Context `{Ax:euclidean_neutral}.
Lemma lemma_congruencesymmetric :
∀ A B C D,
Cong B C A D →
Cong A D B C.
Proof.
intros.
assert (Cong B C B C) by (conclude cn_congruencereflexive).
assert (Cong A D B C) by (conclude cn_congruencetransitive).
close.
Qed.
End Euclid.
Section Euclid.
Context `{Ax:euclidean_neutral}.
Lemma lemma_congruencesymmetric :
∀ A B C D,
Cong B C A D →
Cong A D B C.
Proof.
intros.
assert (Cong B C B C) by (conclude cn_congruencereflexive).
assert (Cong A D B C) by (conclude cn_congruencetransitive).
close.
Qed.
End Euclid.