Library GeoCoq.Elements.OriginalProofs.lemma_nullsegment3
Require Export GeoCoq.Elements.OriginalProofs.euclidean_tactics.
Section Euclid.
Context `{Ax:euclidean_neutral}.
Lemma lemma_nullsegment3 :
∀ A B C D,
neq A B → Cong A B C D →
neq C D.
Proof.
intros.
assert (¬ eq C D).
{
intro.
assert (Cong A B C C) by (conclude cn_equalitysub).
assert (eq A B) by (conclude axiom_nullsegment1).
contradict.
}
close.
Qed.
End Euclid.
Section Euclid.
Context `{Ax:euclidean_neutral}.
Lemma lemma_nullsegment3 :
∀ A B C D,
neq A B → Cong A B C D →
neq C D.
Proof.
intros.
assert (¬ eq C D).
{
intro.
assert (Cong A B C C) by (conclude cn_equalitysub).
assert (eq A B) by (conclude axiom_nullsegment1).
contradict.
}
close.
Qed.
End Euclid.