Library GeoCoq.Tactics.Coinc.tactics_axioms
Minimal set of lemmas needed to use the ColR tactic.
Class Col_theory (COLTpoint : Type) (CTCol: COLTpoint → COLTpoint → COLTpoint → Prop) :=
{
CTcol_trivial : ∀ A B : COLTpoint, CTCol A A B;
CTcol_permutation_1 : ∀ A B C : COLTpoint, CTCol A B C → CTCol B C A;
CTcol_permutation_2 : ∀ A B C : COLTpoint, CTCol A B C → CTCol A C B;
CTcol3 : ∀ X Y A B C : COLTpoint,
X ≠ Y → CTCol X Y A → CTCol X Y B → CTCol X Y C → CTCol A B C
}.
Class Arity :=
{
COINCpoint : Type;
n : nat
}.
Class Coinc_predicates (Ar : Arity) :=
{
wd : arity COINCpoint (S (S n));
coinc : arity COINCpoint (S (S (S n)))
}.
{
CTcol_trivial : ∀ A B : COLTpoint, CTCol A A B;
CTcol_permutation_1 : ∀ A B C : COLTpoint, CTCol A B C → CTCol B C A;
CTcol_permutation_2 : ∀ A B C : COLTpoint, CTCol A B C → CTCol A C B;
CTcol3 : ∀ X Y A B C : COLTpoint,
X ≠ Y → CTCol X Y A → CTCol X Y B → CTCol X Y C → CTCol A B C
}.
Class Arity :=
{
COINCpoint : Type;
n : nat
}.
Class Coinc_predicates (Ar : Arity) :=
{
wd : arity COINCpoint (S (S n));
coinc : arity COINCpoint (S (S (S n)))
}.
Minimal set of lemmas needed to use the Coinc tactic.
Class Coinc_theory (Ar : Arity) (COP : Coinc_predicates Ar) :=
{
wd_perm_1 : ∀ A : COINCpoint,
∀ X : cartesianPower COINCpoint (S n),
app_1_n wd A X → app_n_1 wd X A;
wd_perm_2 : ∀ A B : COINCpoint,
∀ X : cartesianPower COINCpoint n,
app_2_n wd A B X → app_2_n wd B A X;
coinc_perm_1 : ∀ A : COINCpoint,
∀ X : cartesianPower COINCpoint (S (S n)),
app_1_n coinc A X → app_n_1 coinc X A;
coinc_perm_2 : ∀ A B : COINCpoint,
∀ X : cartesianPower COINCpoint (S n),
app_2_n coinc A B X → app_2_n coinc B A X;
coinc_bd : ∀ A : COINCpoint,
∀ X : cartesianPower COINCpoint (S n),
app_2_n coinc A A X;
coinc_n : ∀ COINC : cartesianPower COINCpoint (S (S (S n))),
∀ WD : cartesianPower COINCpoint (S (S n)),
pred_conj coinc COINC WD →
app wd WD →
app coinc COINC
}.
{
wd_perm_1 : ∀ A : COINCpoint,
∀ X : cartesianPower COINCpoint (S n),
app_1_n wd A X → app_n_1 wd X A;
wd_perm_2 : ∀ A B : COINCpoint,
∀ X : cartesianPower COINCpoint n,
app_2_n wd A B X → app_2_n wd B A X;
coinc_perm_1 : ∀ A : COINCpoint,
∀ X : cartesianPower COINCpoint (S (S n)),
app_1_n coinc A X → app_n_1 coinc X A;
coinc_perm_2 : ∀ A B : COINCpoint,
∀ X : cartesianPower COINCpoint (S n),
app_2_n coinc A B X → app_2_n coinc B A X;
coinc_bd : ∀ A : COINCpoint,
∀ X : cartesianPower COINCpoint (S n),
app_2_n coinc A A X;
coinc_n : ∀ COINC : cartesianPower COINCpoint (S (S (S n))),
∀ WD : cartesianPower COINCpoint (S (S n)),
pred_conj coinc COINC WD →
app wd WD →
app coinc COINC
}.