Library GeoCoq.Elements.OriginalProofs.lemma_3_6b
Require Export GeoCoq.Elements.OriginalProofs.lemma_3_5b.
Section Euclid.
Context `{Ax1:euclidean_neutral}.
Lemma lemma_3_6b :
∀ A B C D,
BetS A B C → BetS A C D →
BetS A B D.
Proof.
intros.
assert (BetS C B A) by (conclude axiom_betweennesssymmetry).
assert (BetS D C A) by (conclude axiom_betweennesssymmetry).
assert (BetS D B A) by (conclude lemma_3_5b).
assert (BetS A B D) by (conclude axiom_betweennesssymmetry).
close.
Qed.
End Euclid.
Section Euclid.
Context `{Ax1:euclidean_neutral}.
Lemma lemma_3_6b :
∀ A B C D,
BetS A B C → BetS A C D →
BetS A B D.
Proof.
intros.
assert (BetS C B A) by (conclude axiom_betweennesssymmetry).
assert (BetS D C A) by (conclude axiom_betweennesssymmetry).
assert (BetS D B A) by (conclude lemma_3_5b).
assert (BetS A B D) by (conclude axiom_betweennesssymmetry).
close.
Qed.
End Euclid.