Library GeoCoq.Elements.OriginalProofs.lemma_NCorder
Require Export GeoCoq.Elements.OriginalProofs.lemma_collinearorder.
Section Euclid.
Context `{Ax1:euclidean_neutral}.
Lemma lemma_NCorder :
∀ A B C,
nCol A B C →
nCol B A C ∧ nCol B C A ∧ nCol C A B ∧ nCol A C B ∧ nCol C B A.
Proof.
intros.
assert (¬ Col B A C).
{
intro.
assert (Col A B C) by (forward_using lemma_collinearorder).
contradict.
}
assert (¬ Col B C A).
{
intro.
assert (Col A B C) by (forward_using lemma_collinearorder).
contradict.
}
assert (¬ Col C A B).
{
intro.
assert (Col A B C) by (forward_using lemma_collinearorder).
contradict.
}
assert (¬ Col A C B).
{
intro.
assert (Col A B C) by (forward_using lemma_collinearorder).
contradict.
}
assert (¬ Col C B A).
{
intro.
assert (Col A B C) by (forward_using lemma_collinearorder).
contradict.
}
close.
Qed.
End Euclid.
Section Euclid.
Context `{Ax1:euclidean_neutral}.
Lemma lemma_NCorder :
∀ A B C,
nCol A B C →
nCol B A C ∧ nCol B C A ∧ nCol C A B ∧ nCol A C B ∧ nCol C B A.
Proof.
intros.
assert (¬ Col B A C).
{
intro.
assert (Col A B C) by (forward_using lemma_collinearorder).
contradict.
}
assert (¬ Col B C A).
{
intro.
assert (Col A B C) by (forward_using lemma_collinearorder).
contradict.
}
assert (¬ Col C A B).
{
intro.
assert (Col A B C) by (forward_using lemma_collinearorder).
contradict.
}
assert (¬ Col A C B).
{
intro.
assert (Col A B C) by (forward_using lemma_collinearorder).
contradict.
}
assert (¬ Col C B A).
{
intro.
assert (Col A B C) by (forward_using lemma_collinearorder).
contradict.
}
close.
Qed.
End Euclid.