Library GeoCoq.Elements.OriginalProofs.lemma_TTorder
Require Export GeoCoq.Elements.OriginalProofs.lemma_TGsymmetric.
Section Euclid.
Context `{Ax:euclidean_neutral_ruler_compass}.
Lemma lemma_TTorder :
∀ A B C D E F G H,
TT A B C D E F G H →
TT C D A B E F G H.
Proof.
intros.
let Tf:=fresh in
assert (Tf:∃ J, (BetS E F J ∧ Cong F J G H ∧ TG A B C D E J)) by (conclude_def TT );destruct Tf as [J];spliter.
assert (TG C D A B E J) by (conclude lemma_TGsymmetric).
assert (TT C D A B E F G H) by (conclude_def TT ).
close.
Qed.
End Euclid.
Section Euclid.
Context `{Ax:euclidean_neutral_ruler_compass}.
Lemma lemma_TTorder :
∀ A B C D E F G H,
TT A B C D E F G H →
TT C D A B E F G H.
Proof.
intros.
let Tf:=fresh in
assert (Tf:∃ J, (BetS E F J ∧ Cong F J G H ∧ TG A B C D E J)) by (conclude_def TT );destruct Tf as [J];spliter.
assert (TG C D A B E J) by (conclude lemma_TGsymmetric).
assert (TT C D A B E F G H) by (conclude_def TT ).
close.
Qed.
End Euclid.