Library GeoCoq.Elements.OriginalProofs.lemma_betweennotequal
Require Export GeoCoq.Elements.OriginalProofs.lemma_3_6a.
Section Euclid.
Context `{Ax:euclidean_neutral}.
Lemma lemma_betweennotequal :
∀ A B C,
BetS A B C →
neq B C ∧ neq A B ∧ neq A C.
Proof.
intros.
assert (¬ eq B C).
{
intro.
assert (BetS A C B) by (conclude cn_equalitysub).
assert (BetS B C B) by (conclude lemma_3_6a).
assert (¬ BetS B C B) by (conclude axiom_betweennessidentity).
contradict.
}
assert (¬ eq A B).
{
intro.
assert (BetS B A C) by (conclude cn_equalitysub).
assert (BetS A B A) by (conclude axiom_innertransitivity).
assert (¬ BetS A B A) by (conclude axiom_betweennessidentity).
contradict.
}
assert (¬ eq A C).
{
intro.
assert (BetS A B A) by (conclude cn_equalitysub).
assert (¬ BetS A B A) by (conclude axiom_betweennessidentity).
contradict.
}
close.
Qed.
End Euclid.
Section Euclid.
Context `{Ax:euclidean_neutral}.
Lemma lemma_betweennotequal :
∀ A B C,
BetS A B C →
neq B C ∧ neq A B ∧ neq A C.
Proof.
intros.
assert (¬ eq B C).
{
intro.
assert (BetS A C B) by (conclude cn_equalitysub).
assert (BetS B C B) by (conclude lemma_3_6a).
assert (¬ BetS B C B) by (conclude axiom_betweennessidentity).
contradict.
}
assert (¬ eq A B).
{
intro.
assert (BetS B A C) by (conclude cn_equalitysub).
assert (BetS A B A) by (conclude axiom_innertransitivity).
assert (¬ BetS A B A) by (conclude axiom_betweennessidentity).
contradict.
}
assert (¬ eq A C).
{
intro.
assert (BetS A B A) by (conclude cn_equalitysub).
assert (¬ BetS A B A) by (conclude axiom_betweennessidentity).
contradict.
}
close.
Qed.
End Euclid.