Library GeoCoq.Elements.OriginalProofs.lemma_congruencetransitive
Require Export GeoCoq.Elements.OriginalProofs.lemma_congruencesymmetric.
Section Euclid.
Context `{Ax:euclidean_neutral}.
Lemma lemma_congruencetransitive :
∀ A B C D E F,
Cong A B C D → Cong C D E F →
Cong A B E F.
Proof.
intros.
assert (Cong C D A B) by (conclude lemma_congruencesymmetric).
assert (Cong A B E F) by (conclude cn_congruencetransitive).
close.
Qed.
End Euclid.
Section Euclid.
Context `{Ax:euclidean_neutral}.
Lemma lemma_congruencetransitive :
∀ A B C D E F,
Cong A B C D → Cong C D E F →
Cong A B E F.
Proof.
intros.
assert (Cong C D A B) by (conclude lemma_congruencesymmetric).
assert (Cong A B E F) by (conclude cn_congruencetransitive).
close.
Qed.
End Euclid.