Library GeoCoq.Elements.OriginalProofs.lemma_equalanglesreflexive
Require Export GeoCoq.Elements.OriginalProofs.lemma_ABCequalsCBA.
Require Export GeoCoq.Elements.OriginalProofs.lemma_equalanglestransitive.
Section Euclid.
Context `{Ax:euclidean_neutral}.
Lemma lemma_equalanglesreflexive :
∀ A B C,
nCol A B C →
CongA A B C A B C.
Proof.
intros.
assert (CongA A B C C B A) by (conclude lemma_ABCequalsCBA).
assert (nCol C B A) by (conclude lemma_equalanglesNC).
assert (CongA C B A A B C) by (conclude lemma_ABCequalsCBA).
assert (CongA A B C A B C) by (conclude lemma_equalanglestransitive).
close.
Qed.
End Euclid.
Require Export GeoCoq.Elements.OriginalProofs.lemma_equalanglestransitive.
Section Euclid.
Context `{Ax:euclidean_neutral}.
Lemma lemma_equalanglesreflexive :
∀ A B C,
nCol A B C →
CongA A B C A B C.
Proof.
intros.
assert (CongA A B C C B A) by (conclude lemma_ABCequalsCBA).
assert (nCol C B A) by (conclude lemma_equalanglesNC).
assert (CongA C B A A B C) by (conclude lemma_ABCequalsCBA).
assert (CongA A B C A B C) by (conclude lemma_equalanglestransitive).
close.
Qed.
End Euclid.