Library GeoCoq.Elements.OriginalProofs.lemma_ray1
Require Export GeoCoq.Elements.OriginalProofs.lemma_ray.
Section Euclid.
Context `{Ax:euclidean_neutral}.
Lemma lemma_ray1 :
∀ A B P,
Out A B P →
(BetS A P B ∨ eq B P ∨ BetS A B P).
Proof.
intros.
assert (¬ ¬ (BetS A P B ∨ eq B P ∨ BetS A B P)).
{
intro.
assert (neq P B) by (conclude lemma_inequalitysymmetric).
assert (BetS A B P) by (conclude lemma_ray).
contradict.
}
close.
Qed.
End Euclid.
Section Euclid.
Context `{Ax:euclidean_neutral}.
Lemma lemma_ray1 :
∀ A B P,
Out A B P →
(BetS A P B ∨ eq B P ∨ BetS A B P).
Proof.
intros.
assert (¬ ¬ (BetS A P B ∨ eq B P ∨ BetS A B P)).
{
intro.
assert (neq P B) by (conclude lemma_inequalitysymmetric).
assert (BetS A B P) by (conclude lemma_ray).
contradict.
}
close.
Qed.
End Euclid.