Library GeoCoq.Elements.OriginalProofs.lemma_ray4

Require Export GeoCoq.Elements.OriginalProofs.lemma_equalitysymmetric.
Require Export GeoCoq.Elements.OriginalProofs.lemma_3_7b.

Section Euclid.

Context `{Ax:euclidean_neutral}.

Lemma lemma_ray4 :
    A B E,
   (BetS A E B eq E B BetS A B E) neq A B
   Out A B E.
Proof.
intros.
assert (¬ eq B A).
 {
 intro.
 assert (eq A B) by (conclude lemma_equalitysymmetric).
 contradict.
 }
let Tf:=fresh in
assert (Tf: J, (BetS B A J Cong A J A B)) by (conclude postulate_extension);destruct Tf as [J];spliter.
assert (BetS J A B) by (conclude axiom_betweennesssymmetry).
assert (Out A B E).
by cases on (BetS A E B eq E B BetS A B E).
{
 assert (BetS J A E) by (conclude axiom_innertransitivity).
 assert (Out A B E) by (conclude_def Out ).
 close.
 }
{
 assert (BetS J A E) by (conclude cn_equalitysub).
 assert (Out A B E) by (conclude_def Out ).
 close.
 }
{
 assert (BetS J A E) by (conclude lemma_3_7b).
 assert (Out A B E) by (conclude_def Out ).
 close.
 }

close.
Qed.

End Euclid.