Library GeoCoq.Elements.OriginalProofs.lemma_samenotopposite

Require Export GeoCoq.Elements.OriginalProofs.lemma_samesidesymmetric.
Require Export GeoCoq.Elements.OriginalProofs.lemma_planeseparation.

Section Euclid.

Context `{Ax:euclidean_neutral_ruler_compass}.

Lemma lemma_samenotopposite :
    A B C D,
   OS A B C D
   ¬ TS A C D B.
Proof.
intros.
let Tf:=fresh in
assert (Tf: p q r, (Col C D p Col C D q BetS A p r BetS B q r nCol C D A nCol C D B)) by (conclude_def OS );destruct Tf as [p[q[r]]];spliter.
assert (OS B A C D) by (forward_using lemma_samesidesymmetric).
assert (¬ TS A C D B).
 {
 intro.
 assert (TS B C D B) by (conclude lemma_planeseparation).
 let Tf:=fresh in
 assert (Tf: M, BetS B M B) by (conclude_def TS );destruct Tf as [M];spliter.
 assert (¬ BetS B M B) by (conclude axiom_betweennessidentity).
 contradict.
 }
close.
Qed.

End Euclid.