Library GeoCoq.Elements.OriginalProofs.lemma_squarerectangle
Require Export GeoCoq.Elements.OriginalProofs.lemma_squareparallelogram.
Require Export GeoCoq.Elements.OriginalProofs.lemma_PGrectangle.
Section Euclid.
Context `{Ax1:euclidean_euclidean}.
Lemma lemma_squarerectangle :
∀ A B C D,
SQ A B C D →
RE A B C D.
Proof.
intros.
assert (PG A B C D) by (conclude lemma_squareparallelogram).
assert (Per D A B) by (conclude_def SQ ).
assert (RE A B C D) by (conclude lemma_PGrectangle).
close.
Qed.
End Euclid.
Require Export GeoCoq.Elements.OriginalProofs.lemma_PGrectangle.
Section Euclid.
Context `{Ax1:euclidean_euclidean}.
Lemma lemma_squarerectangle :
∀ A B C D,
SQ A B C D →
RE A B C D.
Proof.
intros.
assert (PG A B C D) by (conclude lemma_squareparallelogram).
assert (Per D A B) by (conclude_def SQ ).
assert (RE A B C D) by (conclude lemma_PGrectangle).
close.
Qed.
End Euclid.