Library GeoCoq.Elements.OriginalProofs.proposition_31short

Require Export GeoCoq.Elements.OriginalProofs.proposition_31.

Section Euclid.

Context `{Ax:euclidean_neutral_ruler_compass}.

Lemma proposition_31short :
    A B C D,
   BetS B D C nCol B C A
    X Y Z, BetS X A Y CongA X A D A D C Par X Y B C BetS X Z C BetS A Z D.
Proof.
intros.
let Tf:=fresh in
assert (Tf: E F S, (BetS E A F CongA F A D A D B CongA F A D B D A CongA D A F B D A CongA E A D A D C CongA E A D C D A CongA D A E C D A Par E F B C Cong E A D C Cong A F B D Cong A S S D Cong E S S C Cong B S S F BetS E S C BetS B S F BetS A S D)) by (conclude proposition_31);destruct Tf as [E[F[S]]];spliter.
close.
Qed.

End Euclid.