Library GeoCoq.Elements.OriginalProofs.proposition_31short
Require Export GeoCoq.Elements.OriginalProofs.proposition_31.
Section Euclid.
Context `{Ax:euclidean_neutral_ruler_compass}.
Lemma proposition_31short :
∀ A B C D,
BetS B D C → nCol B C A →
∃ X Y Z, BetS X A Y ∧ CongA X A D A D C ∧ Par X Y B C ∧ BetS X Z C ∧ BetS A Z D.
Proof.
intros.
let Tf:=fresh in
assert (Tf:∃ E F S, (BetS E A F ∧ CongA F A D A D B ∧ CongA F A D B D A ∧ CongA D A F B D A ∧ CongA E A D A D C ∧ CongA E A D C D A ∧ CongA D A E C D A ∧ Par E F B C ∧ Cong E A D C ∧ Cong A F B D ∧ Cong A S S D ∧ Cong E S S C ∧ Cong B S S F ∧ BetS E S C ∧ BetS B S F ∧ BetS A S D)) by (conclude proposition_31);destruct Tf as [E[F[S]]];spliter.
close.
Qed.
End Euclid.
Section Euclid.
Context `{Ax:euclidean_neutral_ruler_compass}.
Lemma proposition_31short :
∀ A B C D,
BetS B D C → nCol B C A →
∃ X Y Z, BetS X A Y ∧ CongA X A D A D C ∧ Par X Y B C ∧ BetS X Z C ∧ BetS A Z D.
Proof.
intros.
let Tf:=fresh in
assert (Tf:∃ E F S, (BetS E A F ∧ CongA F A D A D B ∧ CongA F A D B D A ∧ CongA D A F B D A ∧ CongA E A D A D C ∧ CongA E A D C D A ∧ CongA D A E C D A ∧ Par E F B C ∧ Cong E A D C ∧ Cong A F B D ∧ Cong A S S D ∧ Cong E S S C ∧ Cong B S S F ∧ BetS E S C ∧ BetS B S F ∧ BetS A S D)) by (conclude proposition_31);destruct Tf as [E[F[S]]];spliter.
close.
Qed.
End Euclid.