Library GeoCoq.Meta_theory.Counter_models.counter_model_segment_construction

Require Export GeoCoq.Axioms.tarski_axioms.

Section segment_construction_independent.

Inductive Point :=
 P0.

Definition Bet (A B C : Point) := False.

Definition Cong (A B C D : Point) := True.

Lemma between_identity : A B, Bet A B A A=B.
Proof.
unfold Bet; tauto.
Qed.

Lemma cong_pseudo_reflexivity : A B, Cong A B B A.
Proof.
unfold Cong; tauto.
Qed.

Lemma cong_identity : A B C, Cong A B C C A = B.
Proof.
destruct A; destruct B; reflexivity.
Qed.

Lemma cong_inner_transitivity : A B C D E F,
  Cong A B C D Cong A B E F Cong C D E F.
Proof.
unfold Cong; tauto.
Qed.

Lemma inner_pasch : A B C P Q,
  Bet A P C Bet B Q C
   x, Bet P x B Bet Q x A.
Proof.
unfold Bet; tauto.
Qed.

Lemma five_segment : A A' B B' C C' D D',
  Cong A B A' B'
  Cong B C B' C'
  Cong A D A' D'
  Cong B D B' D'
  Bet A B C Bet A' B' C' A B Cong C D C' D'.
Proof.
unfold Bet, Cong; tauto.
Qed.

Lemma not_segment_construction : ¬ ( A B C D,
   E, Bet A B E Cong B E C D).
Proof.
intro.
unfold Bet in ×.
assert (T:= H P0 P0 P0 P0).
destruct T.
tauto.
Qed.

Lemma lower_dim : A, B, C, ¬ (Bet A B C Bet B C A Bet C A B).
Proof.
P0.
P0.
P0.
unfold Bet;tauto.
Qed.

Lemma upper_dim : A B C P Q ,
  P Q Cong A P A Q Cong B P B Q Cong C P C Q
  (Bet A B C Bet B C A Bet C A B).
Proof.
intros.
destruct P.
destruct Q.
tauto.
Qed.

Lemma euclid : A B C,
  ¬ (Bet A B C Bet B C A Bet C A B) CC, Cong A CC B CC Cong A CC C CC.
Proof.
intros.
P0.
unfold Cong;tauto.
Qed.

End segment_construction_independent.