Library GeoCoq.Meta_theory.Parallel_postulates.rectangle_principle_rectangle_existence
Require Import GeoCoq.Axioms.parallel_postulates.
Require Import GeoCoq.Tarski_dev.Annexes.saccheri.
Section rectangle_principle_rectangle_existence.
Context `{T2D:Tarski_2D}.
Lemma rectangle_principle__rectangle_existence : postulate_of_right_lambert_quadrilaterals → postulate_of_existence_of_a_right_lambert_quadrilateral.
Proof.
intros rectangle.
destruct ex_saccheri as [A [B [C [D HSac]]]].
destruct (midpoint_existence B C) as [M HM].
destruct (midpoint_existence A D) as [N HN].
assert(HLam := mid2_sac__lam6521 A B C D M N HSac HM HN).
∃ N; ∃ M; ∃ B; ∃ A.
split.
assumption.
apply (rectangle N); assumption.
Qed.
End rectangle_principle_rectangle_existence.
Require Import GeoCoq.Tarski_dev.Annexes.saccheri.
Section rectangle_principle_rectangle_existence.
Context `{T2D:Tarski_2D}.
Lemma rectangle_principle__rectangle_existence : postulate_of_right_lambert_quadrilaterals → postulate_of_existence_of_a_right_lambert_quadrilateral.
Proof.
intros rectangle.
destruct ex_saccheri as [A [B [C [D HSac]]]].
destruct (midpoint_existence B C) as [M HM].
destruct (midpoint_existence A D) as [N HN].
assert(HLam := mid2_sac__lam6521 A B C D M N HSac HM HN).
∃ N; ∃ M; ∃ B; ∃ A.
split.
assumption.
apply (rectangle N); assumption.
Qed.
End rectangle_principle_rectangle_existence.