Library GeoCoq.Tactics.Coinc.CoincR_for_col
Require Import NArith.
Require Import GeoCoq.Utils.sets.
Require Import GeoCoq.Tactics.Coinc.tarski_to_coinc_theory_for_col.
Require Import GeoCoq.Tactics.Coinc.CoincR.
Section CoincR_for_col.
Context `{TnEQD:Tarski_neutral_dimensionless_with_decidable_point_equality}.
Definition ss_ok_for_col ss interp :=
@ss_ok Tarski_is_a_Arity_for_col
Tarski_is_a_Coinc_predicates_for_col ss interp.
Lemma ss_ok_empty_for_col : ∀ interp, ss_ok_for_col SS.empty interp.
Proof. exact ss_ok_empty. Qed.
Lemma collect_coincs_for_col : ∀ A B C pa pb pc ss interp,
Col A B C →
interp pa = A →
interp pb = B →
interp pc = C →
ss_ok_for_col ss interp →
ss_ok_for_col (SS.add (@CPToSS 3 (pa, (pb, pc))) ss) interp.
Proof.
intros A B C pa pb pc ss interp HCol HA HB HC HSS.
apply (@collect_coincs Tarski_is_a_Arity_for_col
Tarski_is_a_Coinc_predicates_for_col);
[apply Tarski_is_a_Coinc_theory_for_col|simpl|auto].
rewrite HA; rewrite HB; rewrite HC; auto.
Qed.
Definition st_ok_for_col st interp :=
@st_ok Tarski_is_a_Arity_for_col
Tarski_is_a_Coinc_predicates_for_col st interp.
Lemma st_ok_empty_for_col : ∀ interp, st_ok_for_col STempty interp.
Proof. exact st_ok_empty. Qed.
Lemma collect_wds_for_col : ∀ A B pa pb st interp,
A ≠ B →
interp pa = A →
interp pb = B →
st_ok_for_col st interp →
st_ok_for_col (STadd (pa, pb) st) interp.
Proof.
intros A B pa pb st interp HDiff HA HB HST.
apply (@collect_wds Tarski_is_a_Arity_for_col
Tarski_is_a_Coinc_predicates_for_col);
[apply Tarski_is_a_Coinc_theory_for_col|simpl|auto].
rewrite HA; rewrite HB; auto.
Qed.
Definition test_coinc_for_col ss st (pa pb pc : positive) :=
@test_coinc Tarski_is_a_Arity_for_col ss st (pa, (pb, pc)).
Definition interp_CP_for_col (pa pb pc : positive) interp :=
@interp_CP Tarski_is_a_Arity_for_col 2 (pa, (pb, pc)) interp.
Lemma test_coinc_ok_for_col : ∀ pa pb pc ss st interp,
ss_ok_for_col ss interp →
st_ok_for_col st interp →
test_coinc_for_col ss st pa pb pc = true →
Col (interp pa) (interp pb) (interp pc).
Proof.
intros pa pb pc ss st interp HSS HST HTest.
assert (HCol := @test_coinc_ok Tarski_is_a_Arity_for_col
Tarski_is_a_Coinc_predicates_for_col
Tarski_is_a_Coinc_theory_for_col
ss st interp (pa, (pb, pc)) HSS HST HTest).
simpl in HCol; auto.
Qed.
End CoincR_for_col.
Ltac assert_ss_ok Tpoint Col lvar :=
repeat
match goal with
| HCol : Col ?A ?B ?C, HOK : ss_ok_for_col ?SS ?Interp |- _ ⇒
let pa := List_assoc Tpoint A lvar in
let pb := List_assoc Tpoint B lvar in
let pc := List_assoc Tpoint C lvar in
apply PropToTagged in HCol;
apply (collect_coincs_for_col A B C pa pb pc SS Interp HCol) in HOK;
try reflexivity
end.
Ltac assert_st_ok Tpoint lvar :=
repeat
match goal with
| HDiff : ?A ≠ ?B, HOK : st_ok_for_col ?ST ?Interp |- _ ⇒
let pa := List_assoc Tpoint A lvar in
let pb := List_assoc Tpoint B lvar in
apply PropToTagged in HDiff;
apply (collect_wds_for_col A B pa pb ST Interp HDiff) in HOK;
try reflexivity
end.
Ltac Col_refl Tpoint Col :=
match goal with
| Default : Tpoint |- Col ?A ?B ?C ⇒
let lvar := build_numbered_points_list Tpoint in
let pa := List_assoc Tpoint A lvar in
let pb := List_assoc Tpoint B lvar in
let pc := List_assoc Tpoint C lvar in
let c := ((vm_compute;reflexivity) || fail 2 "Can not be deduced") in
let HSS := fresh in
assert (HSS := ss_ok_empty_for_col (interp lvar Default));
assert_ss_ok Tpoint Col lvar;
let HST := fresh in
assert (HST := st_ok_empty_for_col (interp lvar Default));
assert_st_ok Tpoint lvar;
match goal with
| HOKSS : ss_ok_for_col ?SS ?Interp, HOKST : st_ok_for_col ?ST ?Interp |- _ ⇒
apply (test_coinc_ok_for_col pa pb pc SS ST
Interp HOKSS HOKST); c
end
end.
Require Import GeoCoq.Utils.sets.
Require Import GeoCoq.Tactics.Coinc.tarski_to_coinc_theory_for_col.
Require Import GeoCoq.Tactics.Coinc.CoincR.
Section CoincR_for_col.
Context `{TnEQD:Tarski_neutral_dimensionless_with_decidable_point_equality}.
Definition ss_ok_for_col ss interp :=
@ss_ok Tarski_is_a_Arity_for_col
Tarski_is_a_Coinc_predicates_for_col ss interp.
Lemma ss_ok_empty_for_col : ∀ interp, ss_ok_for_col SS.empty interp.
Proof. exact ss_ok_empty. Qed.
Lemma collect_coincs_for_col : ∀ A B C pa pb pc ss interp,
Col A B C →
interp pa = A →
interp pb = B →
interp pc = C →
ss_ok_for_col ss interp →
ss_ok_for_col (SS.add (@CPToSS 3 (pa, (pb, pc))) ss) interp.
Proof.
intros A B C pa pb pc ss interp HCol HA HB HC HSS.
apply (@collect_coincs Tarski_is_a_Arity_for_col
Tarski_is_a_Coinc_predicates_for_col);
[apply Tarski_is_a_Coinc_theory_for_col|simpl|auto].
rewrite HA; rewrite HB; rewrite HC; auto.
Qed.
Definition st_ok_for_col st interp :=
@st_ok Tarski_is_a_Arity_for_col
Tarski_is_a_Coinc_predicates_for_col st interp.
Lemma st_ok_empty_for_col : ∀ interp, st_ok_for_col STempty interp.
Proof. exact st_ok_empty. Qed.
Lemma collect_wds_for_col : ∀ A B pa pb st interp,
A ≠ B →
interp pa = A →
interp pb = B →
st_ok_for_col st interp →
st_ok_for_col (STadd (pa, pb) st) interp.
Proof.
intros A B pa pb st interp HDiff HA HB HST.
apply (@collect_wds Tarski_is_a_Arity_for_col
Tarski_is_a_Coinc_predicates_for_col);
[apply Tarski_is_a_Coinc_theory_for_col|simpl|auto].
rewrite HA; rewrite HB; auto.
Qed.
Definition test_coinc_for_col ss st (pa pb pc : positive) :=
@test_coinc Tarski_is_a_Arity_for_col ss st (pa, (pb, pc)).
Definition interp_CP_for_col (pa pb pc : positive) interp :=
@interp_CP Tarski_is_a_Arity_for_col 2 (pa, (pb, pc)) interp.
Lemma test_coinc_ok_for_col : ∀ pa pb pc ss st interp,
ss_ok_for_col ss interp →
st_ok_for_col st interp →
test_coinc_for_col ss st pa pb pc = true →
Col (interp pa) (interp pb) (interp pc).
Proof.
intros pa pb pc ss st interp HSS HST HTest.
assert (HCol := @test_coinc_ok Tarski_is_a_Arity_for_col
Tarski_is_a_Coinc_predicates_for_col
Tarski_is_a_Coinc_theory_for_col
ss st interp (pa, (pb, pc)) HSS HST HTest).
simpl in HCol; auto.
Qed.
End CoincR_for_col.
Ltac assert_ss_ok Tpoint Col lvar :=
repeat
match goal with
| HCol : Col ?A ?B ?C, HOK : ss_ok_for_col ?SS ?Interp |- _ ⇒
let pa := List_assoc Tpoint A lvar in
let pb := List_assoc Tpoint B lvar in
let pc := List_assoc Tpoint C lvar in
apply PropToTagged in HCol;
apply (collect_coincs_for_col A B C pa pb pc SS Interp HCol) in HOK;
try reflexivity
end.
Ltac assert_st_ok Tpoint lvar :=
repeat
match goal with
| HDiff : ?A ≠ ?B, HOK : st_ok_for_col ?ST ?Interp |- _ ⇒
let pa := List_assoc Tpoint A lvar in
let pb := List_assoc Tpoint B lvar in
apply PropToTagged in HDiff;
apply (collect_wds_for_col A B pa pb ST Interp HDiff) in HOK;
try reflexivity
end.
Ltac Col_refl Tpoint Col :=
match goal with
| Default : Tpoint |- Col ?A ?B ?C ⇒
let lvar := build_numbered_points_list Tpoint in
let pa := List_assoc Tpoint A lvar in
let pb := List_assoc Tpoint B lvar in
let pc := List_assoc Tpoint C lvar in
let c := ((vm_compute;reflexivity) || fail 2 "Can not be deduced") in
let HSS := fresh in
assert (HSS := ss_ok_empty_for_col (interp lvar Default));
assert_ss_ok Tpoint Col lvar;
let HST := fresh in
assert (HST := st_ok_empty_for_col (interp lvar Default));
assert_st_ok Tpoint lvar;
match goal with
| HOKSS : ss_ok_for_col ?SS ?Interp, HOKST : st_ok_for_col ?ST ?Interp |- _ ⇒
apply (test_coinc_ok_for_col pa pb pc SS ST
Interp HOKSS HOKST); c
end
end.