Library GeoCoq.Tactics.Coinc.CoincR_for_col

Require Import NArith.
Require Import GeoCoq.Utils.sets.
Require Import GeoCoq.Tactics.Coinc.tarski_to_coinc_theory_for_col.
Require Import GeoCoq.Tactics.Coinc.CoincR.

Section CoincR_for_col.

Context `{TnEQD:Tarski_neutral_dimensionless_with_decidable_point_equality}.

Definition ss_ok_for_col ss interp :=
  @ss_ok Tarski_is_a_Arity_for_col
         Tarski_is_a_Coinc_predicates_for_col ss interp.

Lemma ss_ok_empty_for_col : interp, ss_ok_for_col SS.empty interp.
Proof. exact ss_ok_empty. Qed.

Lemma collect_coincs_for_col : A B C pa pb pc ss interp,
  Col A B C
  interp pa = A
  interp pb = B
  interp pc = C
  ss_ok_for_col ss interp
  ss_ok_for_col (SS.add (@CPToSS 3 (pa, (pb, pc))) ss) interp.
Proof.
intros A B C pa pb pc ss interp HCol HA HB HC HSS.
apply (@collect_coincs Tarski_is_a_Arity_for_col
                       Tarski_is_a_Coinc_predicates_for_col);
[apply Tarski_is_a_Coinc_theory_for_col|simpl|auto].
rewrite HA; rewrite HB; rewrite HC; auto.
Qed.

Definition st_ok_for_col st interp :=
  @st_ok Tarski_is_a_Arity_for_col
         Tarski_is_a_Coinc_predicates_for_col st interp.

Lemma st_ok_empty_for_col : interp, st_ok_for_col STempty interp.
Proof. exact st_ok_empty. Qed.

Lemma collect_wds_for_col : A B pa pb st interp,
  A B
  interp pa = A
  interp pb = B
  st_ok_for_col st interp
  st_ok_for_col (STadd (pa, pb) st) interp.
Proof.
intros A B pa pb st interp HDiff HA HB HST.
apply (@collect_wds Tarski_is_a_Arity_for_col
                    Tarski_is_a_Coinc_predicates_for_col);
[apply Tarski_is_a_Coinc_theory_for_col|simpl|auto].
rewrite HA; rewrite HB; auto.
Qed.

Definition test_coinc_for_col ss st (pa pb pc : positive) :=
  @test_coinc Tarski_is_a_Arity_for_col ss st (pa, (pb, pc)).

Definition interp_CP_for_col (pa pb pc : positive) interp :=
  @interp_CP Tarski_is_a_Arity_for_col 2 (pa, (pb, pc)) interp.

Lemma test_coinc_ok_for_col : pa pb pc ss st interp,
  ss_ok_for_col ss interp
  st_ok_for_col st interp
  test_coinc_for_col ss st pa pb pc = true
  Col (interp pa) (interp pb) (interp pc).
Proof.
intros pa pb pc ss st interp HSS HST HTest.
assert (HCol := @test_coinc_ok Tarski_is_a_Arity_for_col
                               Tarski_is_a_Coinc_predicates_for_col
                               Tarski_is_a_Coinc_theory_for_col
                               ss st interp (pa, (pb, pc)) HSS HST HTest).
simpl in HCol; auto.
Qed.

End CoincR_for_col.

Ltac assert_ss_ok Tpoint Col lvar :=
  repeat
  match goal with
    | HCol : Col ?A ?B ?C, HOK : ss_ok_for_col ?SS ?Interp |- _
      let pa := List_assoc Tpoint A lvar in
      let pb := List_assoc Tpoint B lvar in
      let pc := List_assoc Tpoint C lvar in
      apply PropToTagged in HCol;
      apply (collect_coincs_for_col A B C pa pb pc SS Interp HCol) in HOK;
      try reflexivity
  end.

Ltac assert_st_ok Tpoint lvar :=
  repeat
  match goal with
    | HDiff : ?A ?B, HOK : st_ok_for_col ?ST ?Interp |- _
      let pa := List_assoc Tpoint A lvar in
      let pb := List_assoc Tpoint B lvar in
      apply PropToTagged in HDiff;
      apply (collect_wds_for_col A B pa pb ST Interp HDiff) in HOK;
      try reflexivity
  end.

Ltac Col_refl Tpoint Col :=
  match goal with
    | Default : Tpoint |- Col ?A ?B ?C
      let lvar := build_numbered_points_list Tpoint in
      let pa := List_assoc Tpoint A lvar in
      let pb := List_assoc Tpoint B lvar in
      let pc := List_assoc Tpoint C lvar in
      let c := ((vm_compute;reflexivity) || fail 2 "Can not be deduced") in
      let HSS := fresh in
      assert (HSS := ss_ok_empty_for_col (interp lvar Default));
      assert_ss_ok Tpoint Col lvar;
      let HST := fresh in
      assert (HST := st_ok_empty_for_col (interp lvar Default));
      assert_st_ok Tpoint lvar;
      match goal with
        | HOKSS : ss_ok_for_col ?SS ?Interp, HOKST : st_ok_for_col ?ST ?Interp |- _
          apply (test_coinc_ok_for_col pa pb pc SS ST
                                       Interp HOKSS HOKST); c
      end
  end.