Library GeoCoq.Tactics.Coinc.CoincR_for_cop

Require Import NArith.
Require Import GeoCoq.Utils.sets.
Require Import GeoCoq.Tactics.Coinc.tarski_to_coinc_theory_for_cop.
Require Import GeoCoq.Tactics.Coinc.CoincR.

Section CoincR_for_cop.

Context `{TnEQD:Tarski_neutral_dimensionless_with_decidable_point_equality}.

Definition ss_ok_for_cop ss interp :=
  @ss_ok Tarski_is_a_Arity_for_cop
         Tarski_is_a_Coinc_predicates_for_cop ss interp.

Lemma ss_ok_empty_for_cop : interp, ss_ok_for_cop SS.empty interp.
Proof. exact ss_ok_empty. Qed.

Lemma collect_coincs_for_cop : A B C D pa pb pc pd ss interp,
  Coplanar A B C D
  interp pa = A
  interp pb = B
  interp pc = C
  interp pd = D
  ss_ok_for_cop ss interp
  ss_ok_for_cop (SS.add (@CPToSS 4 (pa, (pb, (pc, pd)))) ss) interp.
Proof.
intros A B C D pa pb pc pd ss interp HCol HA HB HC HD HSS.
apply (@collect_coincs Tarski_is_a_Arity_for_cop
                       Tarski_is_a_Coinc_predicates_for_cop);
[apply Tarski_is_a_Coinc_theory_for_cop|simpl|auto].
rewrite HA; rewrite HB; rewrite HC; rewrite HD; auto.
Qed.

Definition st_ok_for_cop st interp :=
  @st_ok Tarski_is_a_Arity_for_cop
         Tarski_is_a_Coinc_predicates_for_cop st interp.

Lemma st_ok_empty_for_cop : interp, st_ok_for_cop STempty interp.
Proof. exact st_ok_empty. Qed.

Lemma collect_wds_for_cop : A B C pa pb pc st interp,
  ¬ Col A B C
  interp pa = A
  interp pb = B
  interp pc = C
  st_ok_for_cop st interp
  st_ok_for_cop (STadd (pa, (pb, pc)) st) interp.
Proof.
intros A B C pa pb pc st interp HDiff HA HB HC HST.
apply (@collect_wds Tarski_is_a_Arity_for_cop
                    Tarski_is_a_Coinc_predicates_for_cop);
[apply Tarski_is_a_Coinc_theory_for_cop|simpl|auto].
rewrite HA; rewrite HB; rewrite HC; auto.
Qed.

Definition test_coinc_for_cop ss st (pa pb pc pd : positive) :=
  @test_coinc Tarski_is_a_Arity_for_cop ss st (pa, (pb, (pc, pd))).

Definition interp_CP_for_cop (pa pb pc pd : positive) interp :=
  @interp_CP Tarski_is_a_Arity_for_cop 3 (pa, (pb, (pc, pd))) interp.

Lemma test_coinc_ok_for_cop : pa pb pc pd ss st interp,
  ss_ok_for_cop ss interp
  st_ok_for_cop st interp
  test_coinc_for_cop ss st pa pb pc pd = true
  Coplanar (interp pa) (interp pb) (interp pc) (interp pd).
Proof.
intros pa pb pc pd ss st interp HSS HST HTest.
assert (HCop := @test_coinc_ok Tarski_is_a_Arity_for_cop
                               Tarski_is_a_Coinc_predicates_for_cop
                               Tarski_is_a_Coinc_theory_for_cop
                               ss st interp (pa, (pb, (pc, pd))) HSS HST HTest).
simpl in HCop; auto.
Qed.

End CoincR_for_cop.

Ltac assert_ss_ok Tpoint Cop lvar :=
  repeat
  match goal with
    | HCop : Cop ?A ?B ?C ?D, HOK : ss_ok_for_cop ?SS ?Interp |- _
      let pa := List_assoc Tpoint A lvar in
      let pb := List_assoc Tpoint B lvar in
      let pc := List_assoc Tpoint C lvar in
      let pd := List_assoc Tpoint D lvar in
      apply PropToTagged in HCop;
      apply (collect_coincs_for_cop A B C D pa pb pc pd SS Interp HCop) in HOK;
      try reflexivity
  end.

Ltac assert_st_ok Tpoint Col lvar :=
  repeat
  match goal with
    | HNCol : ¬ Col ?A ?B ?C, HOK : st_ok_for_cop ?ST ?Interp |- _
      let pa := List_assoc Tpoint A lvar in
      let pb := List_assoc Tpoint B lvar in
      let pc := List_assoc Tpoint C lvar in
      apply PropToTagged in HNCol;
      apply (collect_wds_for_cop A B C pa pb pc ST Interp HNCol) in HOK;
      try reflexivity
  end.

Ltac Cop_refl Tpoint Col Cop :=
  match goal with
    | Default : Tpoint |- Cop ?A ?B ?C ?D
      let lvar := build_numbered_points_list Tpoint in
      let pa := List_assoc Tpoint A lvar in
      let pb := List_assoc Tpoint B lvar in
      let pc := List_assoc Tpoint C lvar in
      let pd := List_assoc Tpoint D lvar in
      let c := ((vm_compute;reflexivity) || fail 2 "Can not be deduced") in
      let HSS := fresh in
      assert (HSS := ss_ok_empty_for_cop (interp lvar Default));
      assert_ss_ok Tpoint Cop lvar;
      let HST := fresh in
      assert (HST := st_ok_empty_for_cop (interp lvar Default));
      assert_st_ok Tpoint Col lvar;
      match goal with
        | HOKSS : ss_ok_for_cop ?SS ?Interp, HOKST : st_ok_for_cop ?ST ?Interp |- _
          apply (test_coinc_ok_for_cop pa pb pc pd SS ST
                                       Interp HOKSS HOKST); c
      end
  end.