Library GeoCoq.Tactics.UnitTests.unit_tests_2
Require Import GeoCoq.Tarski_dev.Annexes.suma.
Section UnitTests.
Context `{T2D:Tarski_2D}.
Goal ∀ A B C D E F G H:Tpoint, A≠B → B≠A → C≠D → D≠C →
E≠F → F≠E → G≠H → H≠G → True.
Proof.
intros.
first [not_exist_hyp4 A B C D E F G H | clear H0].
first [not_exist_hyp4 A B C D E F G H | clear H1].
not_exist_hyp4 A B C D E F G H.
auto.
Qed.
Goal ∀ A B C D E F G H:Tpoint, A≠B → B≠A → C≠D → D≠C →
E≠F → F≠E → G≠H → H≠G → True.
Proof.
intros.
first [not_exist_hyp4 A B C D E F G H | clear H2].
first [not_exist_hyp4 A B C D E F G H | clear H3].
not_exist_hyp4 A B C D E F G H.
auto.
Qed.
Goal ∀ A B C D E F G H:Tpoint, A≠B → B≠A → C≠D → D≠C →
E≠F → F≠E → G≠H → H≠G → True.
Proof.
intros.
first [not_exist_hyp4 A B C D E F G H | clear H4].
first [not_exist_hyp4 A B C D E F G H | clear H5].
not_exist_hyp4 A B C D E F G H.
auto.
Qed.
Goal ∀ A B C D E F G H:Tpoint, A≠B → B≠A → C≠D → D≠C →
E≠F → F≠E → G≠H → H≠G → True.
Proof.
intros.
first [not_exist_hyp4 A B C D E F G H | clear H6].
first [not_exist_hyp4 A B C D E F G H | clear H7].
not_exist_hyp4 A B C D E F G H.
auto.
Qed.
Goal ∀ A B C D E F, CongA A B C D E F → A ≠ B ∧ C ≠ B ∧ D ≠ E ∧ F ≠ E.
Proof.
intros.
assert_diffs.
repeat split; assumption.
Qed.
Goal ∀ A B C P, InAngle P A B C → A ≠ B ∧ C ≠ B ∧ P ≠ B.
Proof.
intros.
assert_diffs.
repeat split; assumption.
Qed.
Goal ∀ A B C D E F, LeA A B C D E F → A ≠ B ∧ C ≠ B ∧ D ≠ E ∧ F ≠ E.
Proof.
intros.
assert_diffs.
repeat split; assumption.
Qed.
Goal ∀ A B C D E F, LtA A B C D E F → A ≠ B ∧ C ≠ B ∧ D ≠ E ∧ F ≠ E.
Proof.
intros.
assert_diffs.
repeat split; assumption.
Qed.
Goal ∀ A B C, Acute A B C → A ≠ B ∧ C ≠ B.
Proof.
intros.
assert_diffs.
repeat split; assumption.
Qed.
Goal ∀ A B C, Obtuse A B C → A ≠ B ∧ C ≠ B.
Proof.
intros.
assert_diffs.
repeat split; assumption.
Qed.
Goal ∀ A B C D E F G H I J K L:Tpoint, A≠B → B≠A → C≠D → D≠C →
E≠F → F≠E → G≠H → H≠G → I≠J → J≠I → K≠L → L≠K → True.
Proof.
intros.
first [not_exist_hyp6 A B C D E F G H I J K L | clear H0].
first [not_exist_hyp6 A B C D E F G H I J K L | clear H1].
not_exist_hyp6 A B C D E F G H I J K L.
auto.
Qed.
Goal ∀ A B C D E F G H I J K L:Tpoint, A≠B → B≠A → C≠D → D≠C →
E≠F → F≠E → G≠H → H≠G → I≠J → J≠I → K≠L → L≠K → True.
Proof.
intros.
first [not_exist_hyp6 A B C D E F G H I J K L | clear H2].
first [not_exist_hyp6 A B C D E F G H I J K L | clear H3].
not_exist_hyp6 A B C D E F G H I J K L.
auto.
Qed.
Goal ∀ A B C D E F G H I J K L:Tpoint, A≠B → B≠A → C≠D → D≠C →
E≠F → F≠E → G≠H → H≠G → I≠J → J≠I → K≠L → L≠K → True.
Proof.
intros.
first [not_exist_hyp6 A B C D E F G H I J K L | clear H4].
first [not_exist_hyp6 A B C D E F G H I J K L | clear H5].
not_exist_hyp6 A B C D E F G H I J K L.
auto.
Qed.
Goal ∀ A B C D E F G H I J K L:Tpoint, A≠B → B≠A → C≠D → D≠C →
E≠F → F≠E → G≠H → H≠G → I≠J → J≠I → K≠L → L≠K → True.
Proof.
intros.
first [not_exist_hyp6 A B C D E F G H I J K L | clear H6].
first [not_exist_hyp6 A B C D E F G H I J K L | clear H7].
not_exist_hyp6 A B C D E F G H I J K L.
auto.
Qed.
Goal ∀ A B C D E F G H I J K L:Tpoint, A≠B → B≠A → C≠D → D≠C →
E≠F → F≠E → G≠H → H≠G → I≠J → J≠I → K≠L → L≠K → True.
Proof.
intros.
first [not_exist_hyp6 A B C D E F G H I J K L | clear H8].
first [not_exist_hyp6 A B C D E F G H I J K L | clear H9].
not_exist_hyp6 A B C D E F G H I J K L.
auto.
Qed.
Goal ∀ A B C D E F G H I J K L:Tpoint, A≠B → B≠A → C≠D → D≠C →
E≠F → F≠E → G≠H → H≠G → I≠J → J≠I → K≠L → L≠K → True.
Proof.
intros.
first [not_exist_hyp6 A B C D E F G H I J K L | clear H10].
first [not_exist_hyp6 A B C D E F G H I J K L | clear H11].
not_exist_hyp6 A B C D E F G H I J K L.
auto.
Qed.
Goal ∀ A B C D E F G H I, SumA A B C D E F G H I →
A ≠ B ∧ B ≠ C ∧ D ≠ E ∧ E ≠ F ∧ G ≠ H ∧ H ≠ I.
Proof.
intros.
assert_diffs.
repeat split; assumption.
Qed.
Goal ∀ A B C D E F, SAMS A B C D E F → A ≠ B ∧ B ≠ C ∧ D ≠ E ∧ E ≠ F.
Proof.
intros.
assert_diffs.
repeat split; assumption.
Qed.
End UnitTests.
Section UnitTests.
Context `{T2D:Tarski_2D}.
Goal ∀ A B C D E F G H:Tpoint, A≠B → B≠A → C≠D → D≠C →
E≠F → F≠E → G≠H → H≠G → True.
Proof.
intros.
first [not_exist_hyp4 A B C D E F G H | clear H0].
first [not_exist_hyp4 A B C D E F G H | clear H1].
not_exist_hyp4 A B C D E F G H.
auto.
Qed.
Goal ∀ A B C D E F G H:Tpoint, A≠B → B≠A → C≠D → D≠C →
E≠F → F≠E → G≠H → H≠G → True.
Proof.
intros.
first [not_exist_hyp4 A B C D E F G H | clear H2].
first [not_exist_hyp4 A B C D E F G H | clear H3].
not_exist_hyp4 A B C D E F G H.
auto.
Qed.
Goal ∀ A B C D E F G H:Tpoint, A≠B → B≠A → C≠D → D≠C →
E≠F → F≠E → G≠H → H≠G → True.
Proof.
intros.
first [not_exist_hyp4 A B C D E F G H | clear H4].
first [not_exist_hyp4 A B C D E F G H | clear H5].
not_exist_hyp4 A B C D E F G H.
auto.
Qed.
Goal ∀ A B C D E F G H:Tpoint, A≠B → B≠A → C≠D → D≠C →
E≠F → F≠E → G≠H → H≠G → True.
Proof.
intros.
first [not_exist_hyp4 A B C D E F G H | clear H6].
first [not_exist_hyp4 A B C D E F G H | clear H7].
not_exist_hyp4 A B C D E F G H.
auto.
Qed.
Goal ∀ A B C D E F, CongA A B C D E F → A ≠ B ∧ C ≠ B ∧ D ≠ E ∧ F ≠ E.
Proof.
intros.
assert_diffs.
repeat split; assumption.
Qed.
Goal ∀ A B C P, InAngle P A B C → A ≠ B ∧ C ≠ B ∧ P ≠ B.
Proof.
intros.
assert_diffs.
repeat split; assumption.
Qed.
Goal ∀ A B C D E F, LeA A B C D E F → A ≠ B ∧ C ≠ B ∧ D ≠ E ∧ F ≠ E.
Proof.
intros.
assert_diffs.
repeat split; assumption.
Qed.
Goal ∀ A B C D E F, LtA A B C D E F → A ≠ B ∧ C ≠ B ∧ D ≠ E ∧ F ≠ E.
Proof.
intros.
assert_diffs.
repeat split; assumption.
Qed.
Goal ∀ A B C, Acute A B C → A ≠ B ∧ C ≠ B.
Proof.
intros.
assert_diffs.
repeat split; assumption.
Qed.
Goal ∀ A B C, Obtuse A B C → A ≠ B ∧ C ≠ B.
Proof.
intros.
assert_diffs.
repeat split; assumption.
Qed.
Goal ∀ A B C D E F G H I J K L:Tpoint, A≠B → B≠A → C≠D → D≠C →
E≠F → F≠E → G≠H → H≠G → I≠J → J≠I → K≠L → L≠K → True.
Proof.
intros.
first [not_exist_hyp6 A B C D E F G H I J K L | clear H0].
first [not_exist_hyp6 A B C D E F G H I J K L | clear H1].
not_exist_hyp6 A B C D E F G H I J K L.
auto.
Qed.
Goal ∀ A B C D E F G H I J K L:Tpoint, A≠B → B≠A → C≠D → D≠C →
E≠F → F≠E → G≠H → H≠G → I≠J → J≠I → K≠L → L≠K → True.
Proof.
intros.
first [not_exist_hyp6 A B C D E F G H I J K L | clear H2].
first [not_exist_hyp6 A B C D E F G H I J K L | clear H3].
not_exist_hyp6 A B C D E F G H I J K L.
auto.
Qed.
Goal ∀ A B C D E F G H I J K L:Tpoint, A≠B → B≠A → C≠D → D≠C →
E≠F → F≠E → G≠H → H≠G → I≠J → J≠I → K≠L → L≠K → True.
Proof.
intros.
first [not_exist_hyp6 A B C D E F G H I J K L | clear H4].
first [not_exist_hyp6 A B C D E F G H I J K L | clear H5].
not_exist_hyp6 A B C D E F G H I J K L.
auto.
Qed.
Goal ∀ A B C D E F G H I J K L:Tpoint, A≠B → B≠A → C≠D → D≠C →
E≠F → F≠E → G≠H → H≠G → I≠J → J≠I → K≠L → L≠K → True.
Proof.
intros.
first [not_exist_hyp6 A B C D E F G H I J K L | clear H6].
first [not_exist_hyp6 A B C D E F G H I J K L | clear H7].
not_exist_hyp6 A B C D E F G H I J K L.
auto.
Qed.
Goal ∀ A B C D E F G H I J K L:Tpoint, A≠B → B≠A → C≠D → D≠C →
E≠F → F≠E → G≠H → H≠G → I≠J → J≠I → K≠L → L≠K → True.
Proof.
intros.
first [not_exist_hyp6 A B C D E F G H I J K L | clear H8].
first [not_exist_hyp6 A B C D E F G H I J K L | clear H9].
not_exist_hyp6 A B C D E F G H I J K L.
auto.
Qed.
Goal ∀ A B C D E F G H I J K L:Tpoint, A≠B → B≠A → C≠D → D≠C →
E≠F → F≠E → G≠H → H≠G → I≠J → J≠I → K≠L → L≠K → True.
Proof.
intros.
first [not_exist_hyp6 A B C D E F G H I J K L | clear H10].
first [not_exist_hyp6 A B C D E F G H I J K L | clear H11].
not_exist_hyp6 A B C D E F G H I J K L.
auto.
Qed.
Goal ∀ A B C D E F G H I, SumA A B C D E F G H I →
A ≠ B ∧ B ≠ C ∧ D ≠ E ∧ E ≠ F ∧ G ≠ H ∧ H ≠ I.
Proof.
intros.
assert_diffs.
repeat split; assumption.
Qed.
Goal ∀ A B C D E F, SAMS A B C D E F → A ≠ B ∧ B ≠ C ∧ D ≠ E ∧ E ≠ F.
Proof.
intros.
assert_diffs.
repeat split; assumption.
Qed.
End UnitTests.