Library GeoCoq.Tarski_dev.Ch12_parallel
Require Export GeoCoq.Tarski_dev.Ch11_angles.
Section T12_1.
Context `{TnEQD:Tarski_neutral_dimensionless_with_decidable_point_equality}.
Lemma par_reflexivity : ∀ A B, A≠B → Par A B A B.
Proof.
intros.
unfold Par.
unfold Par_strict.
right.
repeat split.
assumption.
assumption.
apply col_trivial_1.
apply col_trivial_3.
Qed.
Lemma par_strict_irreflexivity : ∀ A B,
¬ Par_strict A B A B.
Proof.
intros.
intro.
unfold Par_strict in H.
spliter.
apply H2.
∃ A.
split; apply col_trivial_1.
Qed.
Lemma not_par_strict_id : ∀ A B C,
¬ Par_strict A B A C.
Proof.
intros.
intro.
unfold Par_strict in H.
spliter.
apply H2.
∃ A.
split; Col.
Qed.
Lemma par_id : ∀ A B C,
Par A B A C → Col A B C.
Proof.
intros.
unfold Par in H.
induction H.
unfold Par_strict in H.
spliter.
apply False_ind.
apply H2.
∃ A.
Col.
spliter;Col.
Qed.
Lemma par_strict_not_col_1 : ∀ A B C D,
Par_strict A B C D → ¬ Col A B C.
Proof.
intros.
unfold Par_strict in ×.
spliter.
intro.
apply H2.
∃ C.
split;Col.
Qed.
Lemma par_strict_not_col_2 : ∀ A B C D,
Par_strict A B C D → ¬ Col B C D.
Proof.
intros.
unfold Par_strict in ×.
spliter.
intro.
apply H2.
∃ B.
split;Col.
Qed.
Lemma par_strict_not_col_3 : ∀ A B C D,
Par_strict A B C D → ¬ Col C D A.
Proof.
intros.
unfold Par_strict in ×.
spliter.
intro.
apply H2.
∃ A.
split;Col.
Qed.
Lemma par_strict_not_col_4 : ∀ A B C D,
Par_strict A B C D → ¬ Col A B D.
Proof.
intros.
unfold Par_strict in ×.
spliter.
intro.
apply H2.
∃ D.
split;Col.
Qed.
Lemma par_id_1 : ∀ A B C,
Par A B A C → Col B A C.
Proof.
intros.
assert (H1 := par_id A B C H).
Col.
Qed.
Lemma par_id_2 : ∀ A B C,
Par A B A C → Col B C A.
Proof.
intros.
assert (H1 := par_id A B C H).
Col.
Qed.
Lemma par_id_3 : ∀ A B C,
Par A B A C → Col A C B.
Proof.
intros.
assert (H1 := par_id A B C H).
Col.
Qed.
Lemma par_id_4 : ∀ A B C,
Par A B A C → Col C B A.
Proof.
intros.
assert (H1 := par_id A B C H).
Col.
Qed.
Lemma par_id_5 : ∀ A B C,
Par A B A C → Col C A B.
Proof.
intros.
assert (H1 := par_id A B C H).
Col.
Qed.
Lemma par_strict_symmetry :∀ A B C D,
Par_strict A B C D → Par_strict C D A B.
Proof.
unfold Par_strict.
intros.
spliter.
repeat split.
assumption.
assumption.
apply coplanar_perm_16;assumption.
intro.
apply H2.
ex_and H3 X.
∃ X.
split; assumption.
Qed.
Lemma par_symmetry :∀ A B C D,
Par A B C D → Par C D A B.
Proof.
unfold Par.
intros.
induction H.
left.
apply par_strict_symmetry.
assumption.
spliter.
right.
repeat split;try assumption.
eapply (col_transitivity_1 _ D);Col.
eapply (col_transitivity_1 _ C);Col.
Qed.
Lemma par_left_comm : ∀ A B C D,
Par A B C D → Par B A C D.
Proof.
unfold Par.
intros.
induction H.
left.
unfold Par_strict in ×.
spliter.
repeat split.
auto.
assumption.
apply coplanar_perm_6;assumption.
intro.
apply H2.
ex_and H3 X.
∃ X.
Col5.
right.
spliter.
Col5.
Qed.
Lemma par_right_comm : ∀ A B C D,
Par A B C D → Par A B D C.
Proof.
intros.
apply par_symmetry in H.
apply par_symmetry.
apply par_left_comm.
assumption.
Qed.
Lemma par_comm : ∀ A B C D,
Par A B C D → Par B A D C.
Proof.
intros.
apply par_left_comm.
apply par_right_comm.
assumption.
Qed.
Lemma par_strict_left_comm : ∀ A B C D,
Par_strict A B C D → Par_strict B A C D.
Proof.
unfold Par_strict.
intros.
decompose [and] H;clear H.
repeat split.
intuition.
assumption.
apply coplanar_perm_6;assumption.
intro.
apply H4.
destruct H as [X [HCol1 HCol2]].
∃ X; Col.
Qed.
Lemma par_strict_right_comm : ∀ A B C D,
Par_strict A B C D → Par_strict A B D C.
Proof.
unfold Par_strict.
intros.
decompose [and] H;clear H.
repeat split.
assumption.
intuition.
apply coplanar_perm_1;assumption.
intro.
apply H4.
destruct H as [X [HCol1 HCol2]].
∃ X; Col.
Qed.
Lemma par_strict_comm : ∀ A B C D,
Par_strict A B C D → Par_strict B A D C.
Proof.
intros.
apply par_strict_left_comm in H.
apply par_strict_right_comm.
assumption.
Qed.
Lemma par_strict_neq1 : ∀ A B C D, Par_strict A B C D → A ≠ B.
Proof. unfold Par_strict; intros; spliter; auto. Qed.
Lemma par_strict_neq2 : ∀ A B C D, Par_strict A B C D → C ≠ D.
Proof. unfold Par_strict; intros; spliter; auto. Qed.
Lemma par_neq1 : ∀ A B C D, Par A B C D → A ≠ B.
Proof. unfold Par, Par_strict; intros; induction H; spliter; auto. Qed.
Lemma par_neq2 : ∀ A B C D, Par A B C D → C ≠ D.
Proof. unfold Par, Par_strict; intros; induction H; spliter; auto. Qed.
End T12_1.
Ltac assert_diffs :=
repeat
match goal with
| H:(¬Col ?X1 ?X2 ?X3) |- _ ⇒
let h := fresh in
not_exist_hyp3 X1 X2 X1 X3 X2 X3;
assert (h := not_col_distincts X1 X2 X3 H);decompose [and] h;clear h;clean_reap_hyps
| H:(¬Bet ?X1 ?X2 ?X3) |- _ ⇒
let h := fresh in
not_exist_hyp2 X1 X2 X2 X3;
assert (h := not_bet_distincts X1 X2 X3 H);decompose [and] h;clear h;clean_reap_hyps
| H:Bet ?A ?B ?C, H2 : ?A ≠ ?B |-_ ⇒
let T:= fresh in (not_exist_hyp_comm A C);
assert (T:= bet_neq12__neq A B C H H2);clean_reap_hyps
| H:Bet ?A ?B ?C, H2 : ?B ≠ ?A |-_ ⇒
let T:= fresh in (not_exist_hyp_comm A C);
assert (T:= bet_neq21__neq A B C H H2);clean_reap_hyps
| H:Bet ?A ?B ?C, H2 : ?B ≠ ?C |-_ ⇒
let T:= fresh in (not_exist_hyp_comm A C);
assert (T:= bet_neq23__neq A B C H H2);clean_reap_hyps
| H:Bet ?A ?B ?C, H2 : ?C ≠ ?B |-_ ⇒
let T:= fresh in (not_exist_hyp_comm A C);
assert (T:= bet_neq32__neq A B C H H2);clean_reap_hyps
| H:Cong ?A ?B ?C ?D, H2 : ?A ≠ ?B |-_ ⇒
let T:= fresh in (not_exist_hyp_comm C D);
assert (T:= cong_diff A B C D H2 H);clean_reap_hyps
| H:Cong ?A ?B ?C ?D, H2 : ?B ≠ ?A |-_ ⇒
let T:= fresh in (not_exist_hyp_comm C D);
assert (T:= cong_diff_2 A B C D H2 H);clean_reap_hyps
| H:Cong ?A ?B ?C ?D, H2 : ?C ≠ ?D |-_ ⇒
let T:= fresh in (not_exist_hyp_comm A B);
assert (T:= cong_diff_3 A B C D H2 H);clean_reap_hyps
| H:Cong ?A ?B ?C ?D, H2 : ?D ≠ ?C |-_ ⇒
let T:= fresh in (not_exist_hyp_comm A B);
assert (T:= cong_diff_4 A B C D H2 H);clean_reap_hyps
| H:Le ?A ?B ?C ?D, H2 : ?A ≠ ?B |-_ ⇒
let T:= fresh in (not_exist_hyp_comm C D);
assert (T:= le_diff A B C D H2 H);clean_reap_hyps
| H:Lt ?A ?B ?C ?D |-_ ⇒
let T:= fresh in (not_exist_hyp_comm C D);
assert (T:= lt_diff A B C D H);clean_reap_hyps
| H:Midpoint ?I ?A ?B, H2 : ?A≠?B |- _ ⇒
let T:= fresh in (not_exist_hyp2 I B I A);
assert (T:= midpoint_distinct_1 I A B H2 H);
decompose [and] T;clear T;clean_reap_hyps
| H:Midpoint ?I ?A ?B, H2 : ?B≠?A |- _ ⇒
let T:= fresh in (not_exist_hyp2 I B I A);
assert (T:= midpoint_distinct_1 I A B (swap_diff B A H2) H);
decompose [and] T;clear T;clean_reap_hyps
| H:Midpoint ?I ?A ?B, H2 : ?I≠?A |- _ ⇒
let T:= fresh in (not_exist_hyp2 I B A B);
assert (T:= midpoint_distinct_2 I A B H2 H);
decompose [and] T;clear T;clean_reap_hyps
| H:Midpoint ?I ?A ?B, H2 : ?A≠?I |- _ ⇒
let T:= fresh in (not_exist_hyp2 I B A B);
assert (T:= midpoint_distinct_2 I A B (swap_diff A I H2) H);
decompose [and] T;clear T;clean_reap_hyps
| H:Midpoint ?I ?A ?B, H2 : ?I≠?B |- _ ⇒
let T:= fresh in (not_exist_hyp2 I A A B);
assert (T:= midpoint_distinct_3 I A B H2 H);
decompose [and] T;clear T;clean_reap_hyps
| H:Midpoint ?I ?A ?B, H2 : ?B≠?I |- _ ⇒
let T:= fresh in (not_exist_hyp2 I A A B);
assert (T:= midpoint_distinct_3 I A B (swap_diff B I H2) H);
decompose [and] T;clear T;clean_reap_hyps
| H:Perp ?A ?B ?C ?D |- _ ⇒
let T:= fresh in (not_exist_hyp2 A B C D);
assert (T:= perp_distinct A B C D H);
decompose [and] T;clear T;clean_reap_hyps
| H:Perp_at ?X ?A ?B ?C ?D |- _ ⇒
let T:= fresh in (not_exist_hyp2 A B C D);
assert (T:= perp_in_distinct X A B C D H);
decompose [and] T;clear T;clean_reap_hyps
| H:Out ?A ?B ?C |- _ ⇒
let T:= fresh in (not_exist_hyp2 A B A C);
assert (T:= out_distinct A B C H);
decompose [and] T;clear T;clean_reap_hyps
| H:TS ?A ?B ?C ?D |- _ ⇒
let h := fresh in
not_exist_hyp6 A B A C A D B C B D C D;
assert (h := ts_distincts A B C D H);decompose [and] h;clear h;clean_reap_hyps
| H:OS ?A ?B ?C ?D |- _ ⇒
let h := fresh in
not_exist_hyp5 A B A C A D B C B D;
assert (h := os_distincts A B C D H);decompose [and] h;clear h;clean_reap_hyps
| H:CongA ?A ?B ?C ?A' ?B' ?C' |- _ ⇒
let T:= fresh in (not_exist_hyp_comm A B);
assert (T:= conga_diff1 A B C A' B' C' H);clean_reap_hyps
| H:CongA ?A ?B ?C ?A' ?B' ?C' |- _ ⇒
let T:= fresh in (not_exist_hyp_comm B C);
assert (T:= conga_diff2 A B C A' B' C' H);clean_reap_hyps
| H:CongA ?A ?B ?C ?A' ?B' ?C' |- _ ⇒
let T:= fresh in (not_exist_hyp_comm A' B');
assert (T:= conga_diff45 A B C A' B' C' H);clean_reap_hyps
| H:CongA ?A ?B ?C ?A' ?B' ?C' |- _ ⇒
let T:= fresh in (not_exist_hyp_comm B' C');
assert (T:= conga_diff56 A B C A' B' C' H);clean_reap_hyps
| H:(InAngle ?P ?A ?B ?C) |- _ ⇒
let h := fresh in
not_exist_hyp3 A B C B P B;
assert (h := inangle_distincts A B C P H);decompose [and] h;clear h;clean_reap_hyps
| H:LeA ?A ?B ?C ?D ?E ?F |- _ ⇒
let h := fresh in
not_exist_hyp4 A B B C D E E F;
assert (h := lea_distincts A B C D E F H);decompose [and] h;clear h;clean_reap_hyps
| H:LtA ?A ?B ?C ?D ?E ?F |- _ ⇒
let h := fresh in
not_exist_hyp4 A B B C D E E F;
assert (h := lta_distincts A B C D E F H);decompose [and] h;clear h;clean_reap_hyps
| H:(Acute ?A ?B ?C) |- _ ⇒
let h := fresh in
not_exist_hyp2 A B B C;
assert (h := acute_distincts A B C H);decompose [and] h;clear h;clean_reap_hyps
| H:(Obtuse ?A ?B ?C) |- _ ⇒
let h := fresh in
not_exist_hyp2 A B B C;
assert (h := obtuse_distincts A B C H);decompose [and] h;clear h;clean_reap_hyps
| H:Par ?A ?B ?C ?D |- _ ⇒
let T:= fresh in (not_exist_hyp_comm A B);
assert (T:= par_neq1 A B C D H);clean_reap_hyps
| H:Par ?A ?B ?C ?D |- _ ⇒
let T:= fresh in (not_exist_hyp_comm C D);
assert (T:= par_neq2 A B C D H);clean_reap_hyps
| H:Par_strict ?A ?B ?C ?D |- _ ⇒
let T:= fresh in (not_exist_hyp_comm A B);
assert (T:= par_strict_neq1 A B C D H);clean_reap_hyps
| H:Par_strict ?A ?B ?C ?D |- _ ⇒
let T:= fresh in (not_exist_hyp_comm C D);
assert (T:= par_strict_neq2 A B C D H);clean_reap_hyps
end.
Hint Resolve
par_reflexivity par_strict_irreflexivity
par_strict_symmetry par_strict_comm par_strict_right_comm par_strict_left_comm
par_symmetry par_comm par_right_comm par_left_comm : par.
Hint Resolve par_strict_not_col_1 par_strict_not_col_2
par_strict_not_col_3 par_strict_not_col_4 : Col.
Ltac Par := eauto with par.
Section T12_2.
Context `{TnEQD:Tarski_neutral_dimensionless_with_decidable_point_equality}.
Lemma Par_cases :
∀ A B C D,
Par A B C D ∨ Par B A C D ∨ Par A B D C ∨ Par B A D C ∨
Par C D A B ∨ Par C D B A ∨ Par D C A B ∨ Par D C B A →
Par A B C D.
Proof.
intros.
decompose [or] H;Par.
Qed.
Lemma Par_perm :
∀ A B C D,
Par A B C D →
Par A B C D ∧ Par B A C D ∧ Par A B D C ∧ Par B A D C ∧
Par C D A B ∧ Par C D B A ∧ Par D C A B ∧ Par D C B A.
Proof.
intros.
do 7 (split; Par).
Qed.
Lemma Par_strict_cases :
∀ A B C D,
Par_strict A B C D ∨ Par_strict B A C D ∨ Par_strict A B D C ∨ Par_strict B A D C ∨
Par_strict C D A B ∨ Par_strict C D B A ∨ Par_strict D C A B ∨ Par_strict D C B A →
Par_strict A B C D.
Proof.
intros.
decompose [or] H; eauto with par.
Qed.
Lemma Par_strict_perm :
∀ A B C D,
Par_strict A B C D →
Par_strict A B C D ∧ Par_strict B A C D ∧ Par_strict A B D C ∧ Par_strict B A D C ∧
Par_strict C D A B ∧ Par_strict C D B A ∧ Par_strict D C A B ∧ Par_strict D C B A.
Proof.
intros.
do 7 (split; Par).
Qed.
End T12_2.
Section T12_2'.
Context `{T2D:Tarski_2D}.
Lemma l12_6 : ∀ A B C D,
Par_strict A B C D → OS A B C D.
Proof.
intros.
unfold Par_strict in H.
spliter.
assert(HH:= not_two_sides_one_side A B C D H).
apply HH.
intro.
apply H2.
∃ C;Col.
intro.
apply H2.
∃ D;Col.
intro.
apply H2.
unfold TS in H3.
spliter.
ex_and H5 T.
∃ T.
eauto using bet_col with col.
Qed.
Lemma pars__os3412 : ∀ A B C D,
Par_strict A B C D → OS C D A B.
Proof.
intros.
apply l12_6.
apply par_strict_symmetry.
assumption.
Qed.
Lemma Perp_dec : ∀ A B C D, Perp A B C D ∨ ¬ Perp A B C D.
Proof.
intros.
induction (Col_dec A B C).
induction (Perp_in_dec C A B C D).
left.
apply l8_14_2_1a with C;auto.
right.
intro.
apply H0. clear H0.
apply perp_in_right_comm.
apply (l8_15_1 A B D C).
apply perp_distinct in H1.
intuition.
assumption.
apply perp_right_comm;assumption.
elim (l8_18_existence A B C H); intros P HP.
spliter.
induction (eq_dec_points C D).
subst.
right.
intro.
assert (A ≠ B ∧ D ≠ D) by (apply perp_distinct;assumption).
intuition.
induction (Col_dec P C D).
left.
assert (A ≠ B ∧ C ≠ P) by (apply perp_distinct;assumption).
spliter.
apply perp_col1 with P;Col.
right.
intro.
apply H3.
apply col_permutation_2;apply perp_perp_col with A B;apply perp_sym;assumption.
Qed.
Lemma perp_perp_col_col : ∀ X1 X2 Y1 Y2 A B,
Perp X1 X2 A B → Perp Y1 Y2 A B → Col X1 Y1 Y2 → Col X2 Y1 Y2.
Proof.
intros.
assert(HH0:= H).
assert(HH1:= H0).
unfold Perp in HH0.
unfold Perp in HH1.
ex_and HH0 X0.
ex_and HH1 Y0.
induction(eq_dec_points X1 Y2).
subst Y2.
assert(Perp Y1 X1 A B).
eapply perp_col.
intro.
treat_equalities.
apply perp_distinct in H0.
intuition.
apply H0.
Col.
apply col_permutation_1.
eapply perp_perp_col.
apply H.
apply perp_left_comm.
assumption.
assert(Perp Y2 X1 A B).
eapply perp_col.
auto.
apply perp_left_comm.
apply H0.
Col.
assert(Perp X1 Y2 A B).
eapply perp_left_comm.
assumption.
induction(eq_dec_points X1 Y1).
subst Y1.
apply col_permutation_2.
eapply perp_perp_col.
apply H6.
assumption.
assert(Perp X1 Y1 A B).
eauto using perp_left_comm, perp_col with col.
induction (eq_dec_points X2 Y1).
subst Y1.
apply col_trivial_1.
assert(Perp X2 Y1 A B).
eauto using perp_col, perp_left_comm, perp_perp_col with col.
induction (eq_dec_points X2 Y2).
treat_equalities.
Col.
assert (Perp Y2 X2 A B) by (eauto using perp_col, perp_perp_col with col).
eauto using perp_left_comm, perp_perp_col.
Qed.
Lemma l12_9 : ∀ A1 A2 B1 B2 C1 C2,
Perp A1 A2 C1 C2 → Perp B1 B2 C1 C2 →
Par A1 A2 B1 B2.
Proof.
intros A1 A2 B1 B2 C1 C2.
assert(H := all_coplanar A1 A2 B1 B2).
intros.
unfold Par.
unfold Par_strict.
assert(A1 ≠ A2 ∧ C1 ≠ C2) by (apply perp_distinct;assumption).
assert(B1 ≠ B2 ∧ C1 ≠ C2) by (apply perp_distinct;assumption).
spliter.
induction(Col_dec A1 B1 B2).
right.
eauto using perp_perp_col_col.
left.
repeat split.
assumption.
assumption.
apply all_coplanar.
intro.
ex_and H7 AB.
apply H6.
induction(eq_dec_points AB A1).
subst AB.
assumption.
assert(Perp A1 AB C1 C2) by (eauto using perp_col with col).
eauto using perp_perp_col_col, perp_left_comm.
Qed.
Section T12_1.
Context `{TnEQD:Tarski_neutral_dimensionless_with_decidable_point_equality}.
Lemma par_reflexivity : ∀ A B, A≠B → Par A B A B.
Proof.
intros.
unfold Par.
unfold Par_strict.
right.
repeat split.
assumption.
assumption.
apply col_trivial_1.
apply col_trivial_3.
Qed.
Lemma par_strict_irreflexivity : ∀ A B,
¬ Par_strict A B A B.
Proof.
intros.
intro.
unfold Par_strict in H.
spliter.
apply H2.
∃ A.
split; apply col_trivial_1.
Qed.
Lemma not_par_strict_id : ∀ A B C,
¬ Par_strict A B A C.
Proof.
intros.
intro.
unfold Par_strict in H.
spliter.
apply H2.
∃ A.
split; Col.
Qed.
Lemma par_id : ∀ A B C,
Par A B A C → Col A B C.
Proof.
intros.
unfold Par in H.
induction H.
unfold Par_strict in H.
spliter.
apply False_ind.
apply H2.
∃ A.
Col.
spliter;Col.
Qed.
Lemma par_strict_not_col_1 : ∀ A B C D,
Par_strict A B C D → ¬ Col A B C.
Proof.
intros.
unfold Par_strict in ×.
spliter.
intro.
apply H2.
∃ C.
split;Col.
Qed.
Lemma par_strict_not_col_2 : ∀ A B C D,
Par_strict A B C D → ¬ Col B C D.
Proof.
intros.
unfold Par_strict in ×.
spliter.
intro.
apply H2.
∃ B.
split;Col.
Qed.
Lemma par_strict_not_col_3 : ∀ A B C D,
Par_strict A B C D → ¬ Col C D A.
Proof.
intros.
unfold Par_strict in ×.
spliter.
intro.
apply H2.
∃ A.
split;Col.
Qed.
Lemma par_strict_not_col_4 : ∀ A B C D,
Par_strict A B C D → ¬ Col A B D.
Proof.
intros.
unfold Par_strict in ×.
spliter.
intro.
apply H2.
∃ D.
split;Col.
Qed.
Lemma par_id_1 : ∀ A B C,
Par A B A C → Col B A C.
Proof.
intros.
assert (H1 := par_id A B C H).
Col.
Qed.
Lemma par_id_2 : ∀ A B C,
Par A B A C → Col B C A.
Proof.
intros.
assert (H1 := par_id A B C H).
Col.
Qed.
Lemma par_id_3 : ∀ A B C,
Par A B A C → Col A C B.
Proof.
intros.
assert (H1 := par_id A B C H).
Col.
Qed.
Lemma par_id_4 : ∀ A B C,
Par A B A C → Col C B A.
Proof.
intros.
assert (H1 := par_id A B C H).
Col.
Qed.
Lemma par_id_5 : ∀ A B C,
Par A B A C → Col C A B.
Proof.
intros.
assert (H1 := par_id A B C H).
Col.
Qed.
Lemma par_strict_symmetry :∀ A B C D,
Par_strict A B C D → Par_strict C D A B.
Proof.
unfold Par_strict.
intros.
spliter.
repeat split.
assumption.
assumption.
apply coplanar_perm_16;assumption.
intro.
apply H2.
ex_and H3 X.
∃ X.
split; assumption.
Qed.
Lemma par_symmetry :∀ A B C D,
Par A B C D → Par C D A B.
Proof.
unfold Par.
intros.
induction H.
left.
apply par_strict_symmetry.
assumption.
spliter.
right.
repeat split;try assumption.
eapply (col_transitivity_1 _ D);Col.
eapply (col_transitivity_1 _ C);Col.
Qed.
Lemma par_left_comm : ∀ A B C D,
Par A B C D → Par B A C D.
Proof.
unfold Par.
intros.
induction H.
left.
unfold Par_strict in ×.
spliter.
repeat split.
auto.
assumption.
apply coplanar_perm_6;assumption.
intro.
apply H2.
ex_and H3 X.
∃ X.
Col5.
right.
spliter.
Col5.
Qed.
Lemma par_right_comm : ∀ A B C D,
Par A B C D → Par A B D C.
Proof.
intros.
apply par_symmetry in H.
apply par_symmetry.
apply par_left_comm.
assumption.
Qed.
Lemma par_comm : ∀ A B C D,
Par A B C D → Par B A D C.
Proof.
intros.
apply par_left_comm.
apply par_right_comm.
assumption.
Qed.
Lemma par_strict_left_comm : ∀ A B C D,
Par_strict A B C D → Par_strict B A C D.
Proof.
unfold Par_strict.
intros.
decompose [and] H;clear H.
repeat split.
intuition.
assumption.
apply coplanar_perm_6;assumption.
intro.
apply H4.
destruct H as [X [HCol1 HCol2]].
∃ X; Col.
Qed.
Lemma par_strict_right_comm : ∀ A B C D,
Par_strict A B C D → Par_strict A B D C.
Proof.
unfold Par_strict.
intros.
decompose [and] H;clear H.
repeat split.
assumption.
intuition.
apply coplanar_perm_1;assumption.
intro.
apply H4.
destruct H as [X [HCol1 HCol2]].
∃ X; Col.
Qed.
Lemma par_strict_comm : ∀ A B C D,
Par_strict A B C D → Par_strict B A D C.
Proof.
intros.
apply par_strict_left_comm in H.
apply par_strict_right_comm.
assumption.
Qed.
Lemma par_strict_neq1 : ∀ A B C D, Par_strict A B C D → A ≠ B.
Proof. unfold Par_strict; intros; spliter; auto. Qed.
Lemma par_strict_neq2 : ∀ A B C D, Par_strict A B C D → C ≠ D.
Proof. unfold Par_strict; intros; spliter; auto. Qed.
Lemma par_neq1 : ∀ A B C D, Par A B C D → A ≠ B.
Proof. unfold Par, Par_strict; intros; induction H; spliter; auto. Qed.
Lemma par_neq2 : ∀ A B C D, Par A B C D → C ≠ D.
Proof. unfold Par, Par_strict; intros; induction H; spliter; auto. Qed.
End T12_1.
Ltac assert_diffs :=
repeat
match goal with
| H:(¬Col ?X1 ?X2 ?X3) |- _ ⇒
let h := fresh in
not_exist_hyp3 X1 X2 X1 X3 X2 X3;
assert (h := not_col_distincts X1 X2 X3 H);decompose [and] h;clear h;clean_reap_hyps
| H:(¬Bet ?X1 ?X2 ?X3) |- _ ⇒
let h := fresh in
not_exist_hyp2 X1 X2 X2 X3;
assert (h := not_bet_distincts X1 X2 X3 H);decompose [and] h;clear h;clean_reap_hyps
| H:Bet ?A ?B ?C, H2 : ?A ≠ ?B |-_ ⇒
let T:= fresh in (not_exist_hyp_comm A C);
assert (T:= bet_neq12__neq A B C H H2);clean_reap_hyps
| H:Bet ?A ?B ?C, H2 : ?B ≠ ?A |-_ ⇒
let T:= fresh in (not_exist_hyp_comm A C);
assert (T:= bet_neq21__neq A B C H H2);clean_reap_hyps
| H:Bet ?A ?B ?C, H2 : ?B ≠ ?C |-_ ⇒
let T:= fresh in (not_exist_hyp_comm A C);
assert (T:= bet_neq23__neq A B C H H2);clean_reap_hyps
| H:Bet ?A ?B ?C, H2 : ?C ≠ ?B |-_ ⇒
let T:= fresh in (not_exist_hyp_comm A C);
assert (T:= bet_neq32__neq A B C H H2);clean_reap_hyps
| H:Cong ?A ?B ?C ?D, H2 : ?A ≠ ?B |-_ ⇒
let T:= fresh in (not_exist_hyp_comm C D);
assert (T:= cong_diff A B C D H2 H);clean_reap_hyps
| H:Cong ?A ?B ?C ?D, H2 : ?B ≠ ?A |-_ ⇒
let T:= fresh in (not_exist_hyp_comm C D);
assert (T:= cong_diff_2 A B C D H2 H);clean_reap_hyps
| H:Cong ?A ?B ?C ?D, H2 : ?C ≠ ?D |-_ ⇒
let T:= fresh in (not_exist_hyp_comm A B);
assert (T:= cong_diff_3 A B C D H2 H);clean_reap_hyps
| H:Cong ?A ?B ?C ?D, H2 : ?D ≠ ?C |-_ ⇒
let T:= fresh in (not_exist_hyp_comm A B);
assert (T:= cong_diff_4 A B C D H2 H);clean_reap_hyps
| H:Le ?A ?B ?C ?D, H2 : ?A ≠ ?B |-_ ⇒
let T:= fresh in (not_exist_hyp_comm C D);
assert (T:= le_diff A B C D H2 H);clean_reap_hyps
| H:Lt ?A ?B ?C ?D |-_ ⇒
let T:= fresh in (not_exist_hyp_comm C D);
assert (T:= lt_diff A B C D H);clean_reap_hyps
| H:Midpoint ?I ?A ?B, H2 : ?A≠?B |- _ ⇒
let T:= fresh in (not_exist_hyp2 I B I A);
assert (T:= midpoint_distinct_1 I A B H2 H);
decompose [and] T;clear T;clean_reap_hyps
| H:Midpoint ?I ?A ?B, H2 : ?B≠?A |- _ ⇒
let T:= fresh in (not_exist_hyp2 I B I A);
assert (T:= midpoint_distinct_1 I A B (swap_diff B A H2) H);
decompose [and] T;clear T;clean_reap_hyps
| H:Midpoint ?I ?A ?B, H2 : ?I≠?A |- _ ⇒
let T:= fresh in (not_exist_hyp2 I B A B);
assert (T:= midpoint_distinct_2 I A B H2 H);
decompose [and] T;clear T;clean_reap_hyps
| H:Midpoint ?I ?A ?B, H2 : ?A≠?I |- _ ⇒
let T:= fresh in (not_exist_hyp2 I B A B);
assert (T:= midpoint_distinct_2 I A B (swap_diff A I H2) H);
decompose [and] T;clear T;clean_reap_hyps
| H:Midpoint ?I ?A ?B, H2 : ?I≠?B |- _ ⇒
let T:= fresh in (not_exist_hyp2 I A A B);
assert (T:= midpoint_distinct_3 I A B H2 H);
decompose [and] T;clear T;clean_reap_hyps
| H:Midpoint ?I ?A ?B, H2 : ?B≠?I |- _ ⇒
let T:= fresh in (not_exist_hyp2 I A A B);
assert (T:= midpoint_distinct_3 I A B (swap_diff B I H2) H);
decompose [and] T;clear T;clean_reap_hyps
| H:Perp ?A ?B ?C ?D |- _ ⇒
let T:= fresh in (not_exist_hyp2 A B C D);
assert (T:= perp_distinct A B C D H);
decompose [and] T;clear T;clean_reap_hyps
| H:Perp_at ?X ?A ?B ?C ?D |- _ ⇒
let T:= fresh in (not_exist_hyp2 A B C D);
assert (T:= perp_in_distinct X A B C D H);
decompose [and] T;clear T;clean_reap_hyps
| H:Out ?A ?B ?C |- _ ⇒
let T:= fresh in (not_exist_hyp2 A B A C);
assert (T:= out_distinct A B C H);
decompose [and] T;clear T;clean_reap_hyps
| H:TS ?A ?B ?C ?D |- _ ⇒
let h := fresh in
not_exist_hyp6 A B A C A D B C B D C D;
assert (h := ts_distincts A B C D H);decompose [and] h;clear h;clean_reap_hyps
| H:OS ?A ?B ?C ?D |- _ ⇒
let h := fresh in
not_exist_hyp5 A B A C A D B C B D;
assert (h := os_distincts A B C D H);decompose [and] h;clear h;clean_reap_hyps
| H:CongA ?A ?B ?C ?A' ?B' ?C' |- _ ⇒
let T:= fresh in (not_exist_hyp_comm A B);
assert (T:= conga_diff1 A B C A' B' C' H);clean_reap_hyps
| H:CongA ?A ?B ?C ?A' ?B' ?C' |- _ ⇒
let T:= fresh in (not_exist_hyp_comm B C);
assert (T:= conga_diff2 A B C A' B' C' H);clean_reap_hyps
| H:CongA ?A ?B ?C ?A' ?B' ?C' |- _ ⇒
let T:= fresh in (not_exist_hyp_comm A' B');
assert (T:= conga_diff45 A B C A' B' C' H);clean_reap_hyps
| H:CongA ?A ?B ?C ?A' ?B' ?C' |- _ ⇒
let T:= fresh in (not_exist_hyp_comm B' C');
assert (T:= conga_diff56 A B C A' B' C' H);clean_reap_hyps
| H:(InAngle ?P ?A ?B ?C) |- _ ⇒
let h := fresh in
not_exist_hyp3 A B C B P B;
assert (h := inangle_distincts A B C P H);decompose [and] h;clear h;clean_reap_hyps
| H:LeA ?A ?B ?C ?D ?E ?F |- _ ⇒
let h := fresh in
not_exist_hyp4 A B B C D E E F;
assert (h := lea_distincts A B C D E F H);decompose [and] h;clear h;clean_reap_hyps
| H:LtA ?A ?B ?C ?D ?E ?F |- _ ⇒
let h := fresh in
not_exist_hyp4 A B B C D E E F;
assert (h := lta_distincts A B C D E F H);decompose [and] h;clear h;clean_reap_hyps
| H:(Acute ?A ?B ?C) |- _ ⇒
let h := fresh in
not_exist_hyp2 A B B C;
assert (h := acute_distincts A B C H);decompose [and] h;clear h;clean_reap_hyps
| H:(Obtuse ?A ?B ?C) |- _ ⇒
let h := fresh in
not_exist_hyp2 A B B C;
assert (h := obtuse_distincts A B C H);decompose [and] h;clear h;clean_reap_hyps
| H:Par ?A ?B ?C ?D |- _ ⇒
let T:= fresh in (not_exist_hyp_comm A B);
assert (T:= par_neq1 A B C D H);clean_reap_hyps
| H:Par ?A ?B ?C ?D |- _ ⇒
let T:= fresh in (not_exist_hyp_comm C D);
assert (T:= par_neq2 A B C D H);clean_reap_hyps
| H:Par_strict ?A ?B ?C ?D |- _ ⇒
let T:= fresh in (not_exist_hyp_comm A B);
assert (T:= par_strict_neq1 A B C D H);clean_reap_hyps
| H:Par_strict ?A ?B ?C ?D |- _ ⇒
let T:= fresh in (not_exist_hyp_comm C D);
assert (T:= par_strict_neq2 A B C D H);clean_reap_hyps
end.
Hint Resolve
par_reflexivity par_strict_irreflexivity
par_strict_symmetry par_strict_comm par_strict_right_comm par_strict_left_comm
par_symmetry par_comm par_right_comm par_left_comm : par.
Hint Resolve par_strict_not_col_1 par_strict_not_col_2
par_strict_not_col_3 par_strict_not_col_4 : Col.
Ltac Par := eauto with par.
Section T12_2.
Context `{TnEQD:Tarski_neutral_dimensionless_with_decidable_point_equality}.
Lemma Par_cases :
∀ A B C D,
Par A B C D ∨ Par B A C D ∨ Par A B D C ∨ Par B A D C ∨
Par C D A B ∨ Par C D B A ∨ Par D C A B ∨ Par D C B A →
Par A B C D.
Proof.
intros.
decompose [or] H;Par.
Qed.
Lemma Par_perm :
∀ A B C D,
Par A B C D →
Par A B C D ∧ Par B A C D ∧ Par A B D C ∧ Par B A D C ∧
Par C D A B ∧ Par C D B A ∧ Par D C A B ∧ Par D C B A.
Proof.
intros.
do 7 (split; Par).
Qed.
Lemma Par_strict_cases :
∀ A B C D,
Par_strict A B C D ∨ Par_strict B A C D ∨ Par_strict A B D C ∨ Par_strict B A D C ∨
Par_strict C D A B ∨ Par_strict C D B A ∨ Par_strict D C A B ∨ Par_strict D C B A →
Par_strict A B C D.
Proof.
intros.
decompose [or] H; eauto with par.
Qed.
Lemma Par_strict_perm :
∀ A B C D,
Par_strict A B C D →
Par_strict A B C D ∧ Par_strict B A C D ∧ Par_strict A B D C ∧ Par_strict B A D C ∧
Par_strict C D A B ∧ Par_strict C D B A ∧ Par_strict D C A B ∧ Par_strict D C B A.
Proof.
intros.
do 7 (split; Par).
Qed.
End T12_2.
Section T12_2'.
Context `{T2D:Tarski_2D}.
Lemma l12_6 : ∀ A B C D,
Par_strict A B C D → OS A B C D.
Proof.
intros.
unfold Par_strict in H.
spliter.
assert(HH:= not_two_sides_one_side A B C D H).
apply HH.
intro.
apply H2.
∃ C;Col.
intro.
apply H2.
∃ D;Col.
intro.
apply H2.
unfold TS in H3.
spliter.
ex_and H5 T.
∃ T.
eauto using bet_col with col.
Qed.
Lemma pars__os3412 : ∀ A B C D,
Par_strict A B C D → OS C D A B.
Proof.
intros.
apply l12_6.
apply par_strict_symmetry.
assumption.
Qed.
Lemma Perp_dec : ∀ A B C D, Perp A B C D ∨ ¬ Perp A B C D.
Proof.
intros.
induction (Col_dec A B C).
induction (Perp_in_dec C A B C D).
left.
apply l8_14_2_1a with C;auto.
right.
intro.
apply H0. clear H0.
apply perp_in_right_comm.
apply (l8_15_1 A B D C).
apply perp_distinct in H1.
intuition.
assumption.
apply perp_right_comm;assumption.
elim (l8_18_existence A B C H); intros P HP.
spliter.
induction (eq_dec_points C D).
subst.
right.
intro.
assert (A ≠ B ∧ D ≠ D) by (apply perp_distinct;assumption).
intuition.
induction (Col_dec P C D).
left.
assert (A ≠ B ∧ C ≠ P) by (apply perp_distinct;assumption).
spliter.
apply perp_col1 with P;Col.
right.
intro.
apply H3.
apply col_permutation_2;apply perp_perp_col with A B;apply perp_sym;assumption.
Qed.
Lemma perp_perp_col_col : ∀ X1 X2 Y1 Y2 A B,
Perp X1 X2 A B → Perp Y1 Y2 A B → Col X1 Y1 Y2 → Col X2 Y1 Y2.
Proof.
intros.
assert(HH0:= H).
assert(HH1:= H0).
unfold Perp in HH0.
unfold Perp in HH1.
ex_and HH0 X0.
ex_and HH1 Y0.
induction(eq_dec_points X1 Y2).
subst Y2.
assert(Perp Y1 X1 A B).
eapply perp_col.
intro.
treat_equalities.
apply perp_distinct in H0.
intuition.
apply H0.
Col.
apply col_permutation_1.
eapply perp_perp_col.
apply H.
apply perp_left_comm.
assumption.
assert(Perp Y2 X1 A B).
eapply perp_col.
auto.
apply perp_left_comm.
apply H0.
Col.
assert(Perp X1 Y2 A B).
eapply perp_left_comm.
assumption.
induction(eq_dec_points X1 Y1).
subst Y1.
apply col_permutation_2.
eapply perp_perp_col.
apply H6.
assumption.
assert(Perp X1 Y1 A B).
eauto using perp_left_comm, perp_col with col.
induction (eq_dec_points X2 Y1).
subst Y1.
apply col_trivial_1.
assert(Perp X2 Y1 A B).
eauto using perp_col, perp_left_comm, perp_perp_col with col.
induction (eq_dec_points X2 Y2).
treat_equalities.
Col.
assert (Perp Y2 X2 A B) by (eauto using perp_col, perp_perp_col with col).
eauto using perp_left_comm, perp_perp_col.
Qed.
Lemma l12_9 : ∀ A1 A2 B1 B2 C1 C2,
Perp A1 A2 C1 C2 → Perp B1 B2 C1 C2 →
Par A1 A2 B1 B2.
Proof.
intros A1 A2 B1 B2 C1 C2.
assert(H := all_coplanar A1 A2 B1 B2).
intros.
unfold Par.
unfold Par_strict.
assert(A1 ≠ A2 ∧ C1 ≠ C2) by (apply perp_distinct;assumption).
assert(B1 ≠ B2 ∧ C1 ≠ C2) by (apply perp_distinct;assumption).
spliter.
induction(Col_dec A1 B1 B2).
right.
eauto using perp_perp_col_col.
left.
repeat split.
assumption.
assumption.
apply all_coplanar.
intro.
ex_and H7 AB.
apply H6.
induction(eq_dec_points AB A1).
subst AB.
assumption.
assert(Perp A1 AB C1 C2) by (eauto using perp_col with col).
eauto using perp_perp_col_col, perp_left_comm.
Qed.
We show here that from the axioms of neutral geometry we can deduce the existence of a parallel line.
This is important because it shows that axioms of neutral geometry are inconsistent with those of elliptic geometry as
elliptic geometry assumes that no parallel lines exist. This corresponds to l12_10 in Tarski's book.
Lemma parallel_existence : ∀ A B P, A ≠ B → ∃ C, ∃ D, C≠D ∧ Par A B C D ∧ Col P C D.
Proof.
intros.
induction(Col_dec A B P).
∃ A.
∃ B.
repeat split.
assumption.
Par.
Col.
assert(∃ P', Col A B P' ∧ Perp A B P P').
eapply l8_18_existence.
assumption.
ex_and H1 P'.
assert(P ≠ P').
intro.
subst P'.
contradiction.
induction(eq_dec_points P' A).
subst P'.
assert(∃ Q, Per Q P A ∧ Cong Q P A B ∧ OS A P Q B).
eapply ex_per_cong.
auto.
assumption.
apply col_trivial_2.
intro.
apply H0.
Col.
ex_and H4 Q.
∃ P.
∃ Q.
assert(P ≠ Q).
intro.
treat_equalities.
intuition.
repeat split.
assumption.
apply l12_9 with P A.
apply H2.
apply per_perp_in in H4.
apply perp_in_perp_bis in H4.
induction H4.
apply perp_distinct in H4.
spliter.
absurde.
apply perp_left_comm.
assumption.
auto.
assumption.
Col.
assert(∃ Q, Per Q P P' ∧ Cong Q P A B ∧ OS P' P Q A).
eapply ex_per_cong.
auto.
assumption.
Col.
intro.
apply H0.
eapply (col_transitivity_1 _ P').
auto.
Col.
Col.
ex_and H5 Q.
∃ P.
∃ Q.
assert(P ≠ Q).
intro.
treat_equalities.
intuition.
repeat split.
assumption.
apply l12_9 with P P'.
apply H2.
apply per_perp_in in H5.
apply perp_in_perp_bis in H5.
induction H5.
apply perp_distinct in H5.
spliter.
absurde.
apply perp_left_comm.
assumption.
auto.
assumption.
Col.
Qed.
Lemma par_col_par : ∀ A B C D D',
C ≠ D' → Par A B C D → Col C D D' → Par A B C D'.
Proof.
intros.
unfold Par in ×.
induction H0.
left.
unfold Par_strict in ×.
spliter.
repeat split.
assumption.
assumption.
apply all_coplanar.
intro.
apply H4.
ex_and H5 P.
∃ P.
split.
assumption.
apply col_permutation_2.
eapply col_transitivity_1.
apply H.
Col.
Col.
right.
spliter.
repeat split.
assumption.
assumption.
apply col_permutation_2.
eapply col_transitivity_1.
apply H2.
assumption.
Col.
apply col_permutation_2.
eapply col_transitivity_1.
apply H2.
assumption.
Col.
Qed.
Lemma parallel_existence1 : ∀ A B P, A ≠ B → ∃ Q, Par A B P Q.
Proof.
intros.
assert (T:= parallel_existence A B P H).
decompose [and ex] T;clear T.
elim (eq_dec_points x P);intro.
subst.
∃ x0.
intuition.
∃ x.
apply par_right_comm.
apply par_col_par with x0; Par.
Col.
Qed.
Lemma par_not_col : ∀ A B C D X, Par_strict A B C D → Col X A B → ¬Col X C D.
Proof.
intros.
unfold Par_strict in H.
intro.
spliter.
apply H4.
∃ X; Col.
Qed.
Lemma not_strict_par1 : ∀ A B C D X, Par A B C D → Col A B X → Col C D X → Col A B C.
Proof.
intros.
unfold Par in H.
induction H.
unfold Par_strict in H.
spliter.
assert(∃ X, Col X A B ∧ Col X C D).
∃ X.
split; Col.
contradiction.
spliter.
apply col_permutation_1.
eapply col_transitivity_1.
apply H2.
Col.
Col.
Qed.
Lemma not_strict_par2 : ∀ A B C D X, Par A B C D → Col A B X → Col C D X → Col A B D.
Proof.
intros.
eapply not_strict_par1.
apply par_right_comm.
apply H.
apply H0.
Col.
Qed.
Lemma not_strict_par : ∀ A B C D X, Par A B C D → Col A B X → Col C D X → Col A B C ∧ Col A B D.
Proof.
intros.
split.
eapply not_strict_par1.
apply H.
apply H0.
assumption.
eapply not_strict_par2.
apply H.
apply H0.
assumption.
Qed.
Lemma not_par_not_col : ∀ A B C, A ≠ B → A ≠ C → ¬Par A B A C → ¬Col A B C.
Proof.
intros.
intro.
apply H1.
unfold Par.
right.
repeat split.
assumption.
assumption.
apply col_trivial_1.
Col.
Qed.
Lemma not_par_inter_uniqueness : ∀ A B C D X Y,
A ≠ B → C ≠ D → ¬Par A B C D → Col A B X → Col C D X → Col A B Y → Col C D Y →
X = Y.
Proof.
intros.
induction(eq_dec_points C Y).
subst Y.
induction (eq_dec_points C X).
subst X.
reflexivity.
eapply l6_21.
2: apply H.
2: apply H3.
intro.
apply H1.
unfold Par.
right.
repeat split; assumption || ColR.
assumption.
assumption.
assumption.
eapply l6_21.
2: apply H0.
2: apply H2.
intro.
apply H1.
unfold Par.
right.
repeat split; ColR || assumption.
assumption.
assumption.
assumption.
Qed.
Lemma inter_uniqueness_not_par : ∀ A B C D P,
¬Col A B C → Col A B P → Col C D P → ¬Par A B C D.
Proof.
intros.
intro.
unfold Par in H2.
induction H2.
unfold Par_strict in H2.
spliter.
apply H5.
∃ P.
Col5.
spliter.
apply H.
ColR.
Qed.
Lemma col_not_col_not_par :
∀ A B C D,
(∃ P, Col A B P ∧ Col C D P) →
(∃ Q, Col C D Q ∧ ¬Col A B Q) → ¬Par A B C D.
Proof.
intros.
ex_and H P.
ex_and H0 Q.
intro.
unfold Par in H3.
induction H3.
unfold Par_strict in H3.
spliter.
apply H6.
∃ P.
Col5.
spliter.
apply H2.
eapply col3.
apply H4.
Col.
Col.
Col.
Qed.
Lemma par_distincts : ∀ A B C D,
Par A B C D → (Par A B C D ∧ A ≠ B ∧ C ≠ D).
Proof.
intros.
split.
assumption.
unfold Par in H.
induction H.
unfold Par_strict in H.
spliter.
split; assumption.
spliter.
split; assumption.
Qed.
Lemma par_not_col_strict : ∀ A B C D P,
Par A B C D → Col C D P → ¬Col A B P → Par_strict A B C D.
Proof.
intros.
apply par_symmetry in H.
unfold Par in H.
induction H.
apply par_strict_symmetry.
assumption.
spliter.
unfold Par_strict.
repeat split; try assumption; try apply all_coplanar.
intro.
ex_and H5 X.
apply H1.
assert(Col A C D).
eapply (col_transitivity_1 _ B).
assumption.
Col.
Col.
assert(Col B C D).
eapply (col_transitivity_1 _ A).
auto.
Col.
Col.
eapply col3.
apply H.
Col.
Col.
Col.
Qed.
Lemma all_one_side_par_strict : ∀ A B C D,
C ≠ D → (∀ P, Col C D P → OS A B C P) →
Par_strict A B C D.
Proof.
intros.
unfold Par_strict.
repeat split.
assert(HH:=H0 D (col_trivial_2 _ _)).
unfold OS in HH.
ex_and HH C0.
unfold TS in H1.
spliter.
intro.
subst B.
Col.
assumption.
apply all_coplanar.
intro.
ex_and H1 X.
assert(HH:= H0 X (col_permutation_1 _ _ _ H2) ).
unfold OS in HH.
ex_and HH M.
unfold TS in H4.
spliter.
contradiction.
Qed.
Lemma par_col_par_2 : ∀ A B C D P,
A ≠ P → Col A B P → Par A B C D → Par A P C D.
Proof.
intros.
unfold Par in ×.
induction H1.
left.
unfold Par_strict in ×.
spliter.
repeat split; auto; try apply all_coplanar.
intro.
ex_and H5 X.
apply H4.
∃ X.
split.
ColR.
Col.
right.
spliter.
repeat split;auto.
assert(Col A B D).
ColR.
assert(Col A B C).
ColR.
eapply col3.
apply H1.
Col.
Col.
Col.
Qed.
Lemma par_col2_par : ∀ A B C D E F,
E ≠ F → Par A B C D → Col C D E → Col C D F → Par A B E F.
Proof.
intros.
induction (eq_dec_points C E).
subst E.
eapply par_col_par.
assumption.
apply H0.
assumption.
eapply par_col_par.
assumption.
apply par_right_comm.
eapply par_col_par.
apply H3.
apply H0.
assumption.
apply col_permutation_2.
eapply col_transitivity_1.
apply par_distincts in H0.
spliter.
apply H5.
assumption.
assumption.
Qed.
Lemma par_col2_par_bis : ∀ A B C D E F,
E ≠ F → Par A B C D → Col E F C → Col E F D → Par A B E F.
Proof.
intros.
apply par_col2_par with C D; Col; ColR.
Qed.
Lemma par_strict_col_par_strict : ∀ A B C D E,
C ≠ E → Par_strict A B C D → Col C D E →
Par_strict A B C E.
Proof.
intros.
assert(Par C E A B).
eapply par_col_par_2.
auto.
apply H1.
apply par_symmetry.
left.
assumption.
induction H2.
apply par_strict_symmetry.
assumption.
unfold Par_strict in H0.
spliter.
apply False_ind.
apply H8.
∃ C.
split; Col.
Qed.
Lemma par_strict_col2_par_strict : ∀ A B C D E F,
E ≠ F → Par_strict A B C D → Col C D E → Col C D F →
Par_strict A B E F.
Proof.
intros.
unfold Par_strict in ×.
spliter.
repeat split.
assumption.
assumption.
apply all_coplanar.
intro.
apply H5.
ex_and H6 X.
∃ X.
split.
assumption.
assert(Col C E F).
eapply col_transitivity_1.
apply H3.
assumption.
assumption.
assert(Col D E F).
eapply (col_transitivity_1 _ C).
auto.
Col.
Col.
eapply col3.
apply H.
Col.
Col.
Col.
Qed.
Lemma line_dec : ∀ B1 B2 C1 C2, (Col C1 B1 B2 ∧ Col C2 B1 B2) ∨ ¬ (Col C1 B1 B2 ∧ Col C2 B1 B2).
Proof.
intros.
induction (Col_dec C1 B1 B2); induction (Col_dec C2 B1 B2);tauto.
Qed.
Lemma par_distinct : ∀ A B C D, Par A B C D → A ≠ B ∧ C ≠ D.
Proof.
intros.
induction H.
unfold Par_strict in H; intuition.
intuition.
Qed.
Lemma par_col4__par : ∀ A B C D E F G H, E ≠ F → G ≠ H → Par A B C D →
Col A B E → Col A B F → Col C D G → Col C D H → Par E F G H.
Proof.
intros A B C D E F G H.
intros.
apply (par_col2_par _ _ C D); auto.
apply par_symmetry.
apply (par_col2_par _ _ A B); auto.
apply par_symmetry; auto.
Qed.
Lemma par_strict_col4__par_strict : ∀ A B C D E F G H, E ≠ F → G ≠ H →
Par_strict A B C D → Col A B E → Col A B F → Col C D G → Col C D H →
Par_strict E F G H.
Proof.
intros A B C D E F G H.
intros.
apply (par_strict_col2_par_strict _ _ C D); auto.
apply par_strict_symmetry.
apply (par_strict_col2_par_strict _ _ A B); auto.
apply par_strict_symmetry; auto.
Qed.
Lemma par_strict_one_side : ∀ A B C D P,
Par_strict A B C D → Col C D P → OS A B C P.
Proof.
intros A B C D P HPar HCol.
destruct (eq_dec_points C P).
subst P; apply par_strict_not_col_1 in HPar; apply one_side_reflexivity; Col.
apply l12_6, par_strict_col_par_strict with D; trivial.
Qed.
Lemma par_strict_all_one_side : ∀ A B C D,
Par_strict A B C D → (∀ P, Col C D P → OS A B C P).
Proof.
intros.
eapply par_strict_one_side.
apply H.
assumption.
Qed.
Lemma inter_trivial : ∀ A B X, ¬Col A B X → Inter A X B X X.
Proof.
intros.
unfold Inter.
split.
∃ B.
split.
Col.
intro.
apply H.
Col.
split; Col.
Qed.
Lemma inter_sym : ∀ A B C D X, C ≠ D → Inter A B C D X → Inter C D A B X.
Proof.
intros.
unfold Inter in ×.
spliter.
ex_and H0 P.
assert(A ≠ B).
intro.
subst B.
apply H3.
Col.
split.
induction(eq_dec_points A X).
treat_equalities.
∃ B.
split.
Col.
intro.
apply H3.
eapply col3.
apply H.
Col.
Col.
Col.
∃ A.
split.
Col.
intro.
apply H3.
assert(Col A P X).
eapply col3.
apply H.
Col.
Col.
Col.
ColR.
Col.
Qed.
Lemma inter_left_comm : ∀ A B C D X, Inter A B C D X → Inter B A C D X.
Proof.
intros.
unfold Inter in ×.
spliter.
ex_and H P.
split.
∃ P.
split.
assumption.
intro.
apply H2.
Col.
split; Col.
Qed.
Lemma inter_right_comm : ∀ A B C D X, Inter A B C D X → Inter A B D C X.
Proof.
intros.
unfold Inter in ×.
spliter.
ex_and H P.
split.
∃ P.
split.
Col.
assumption.
split; Col.
Qed.
Lemma inter_comm : ∀ A B C D X, Inter A B C D X → Inter B A D C X.
Proof.
intros.
apply inter_left_comm.
apply inter_right_comm.
assumption.
Qed.
Lemma l12_17 : ∀ A B C D P,
A ≠ B → Midpoint P A C → Midpoint P B D → Par A B C D.
Proof.
intros.
induction(Col_dec A B P).
unfold Par.
right.
induction(eq_dec_points A P).
subst P.
apply is_midpoint_id in H0.
subst C.
repeat split.
assumption.
intro.
treat_equalities.
apply l7_2 in H1.
apply is_midpoint_id in H1.
contradiction.
apply col_trivial_1.
unfold Midpoint in H1.
spliter.
apply bet_col.
assumption.
induction(eq_dec_points B P).
subst P.
apply is_midpoint_id in H1.
subst D.
repeat split.
assumption.
intro.
subst C.
apply l7_2 in H0.
apply is_midpoint_id in H0.
auto.
unfold Midpoint in H0.
spliter.
apply bet_col in H0 .
Col.
apply col_trivial_3.
assert(HH0 := H0).
assert(HH1:= H1).
unfold Midpoint in H0.
unfold Midpoint in H1.
spliter.
apply bet_col in H1.
apply bet_col in H0.
assert(Col B C P).
eapply col_permutation_1.
eapply (col_transitivity_1 _ A).
auto.
Col.
Col.
assert(Col B C D).
eapply (col_transitivity_1 _ P).
assumption.
Col.
Col.
repeat split.
assumption.
intro.
treat_equalities.
intuition.
induction(eq_dec_points A D).
subst D.
apply col_trivial_3.
assert(Col C D P).
eapply (col_transitivity_1 _ B).
intro.
subst C.
assert(A = D).
eapply symmetric_point_uniqueness.
eapply l7_2.
apply HH0.
assumption.
contradiction.
Col.
Col.
induction(eq_dec_points C P).
treat_equalities.
intuition.
apply col_permutation_2.
eapply (col_transitivity_1 _ P).
assumption.
Col.
Col.
assumption.
assert(∃ E, Col A B E ∧ Perp A B P E).
eapply l8_18_existence.
assumption.
ex_and H3 E.
assert(A ≠ P).
intro.
treat_equalities.
apply H2.
apply col_trivial_3.
induction(eq_dec_points A E).
treat_equalities.
assert(Per P A B).
eapply perp_in_per.
apply perp_in_comm.
eapply perp_perp_in.
apply perp_sym.
apply perp_comm.
assumption.
prolong B A B' B A.
prolong B' P D' B' P.
assert(Midpoint C D D').
eapply symmetry_preserves_midpoint.
apply H1.
apply H0.
split.
apply H8.
Cong.
split.
assumption.
Cong.
assert(Per P A B').
eapply per_col.
apply H.
assumption.
apply bet_col in H6.
Col.
ex_and H3 B''.
assert(B' = B'').
eapply symmetric_point_uniqueness.
split.
apply H6.
Cong.
assumption.
subst B''.
assert(Cong P D P D').
apply (cong_transitivity _ _ B P).
unfold Midpoint in H1.
spliter.
Cong.
apply (cong_transitivity _ _ B' P).
Cong.
Cong.
assert(Per P C D).
unfold Per.
∃ D'.
split; assumption.
apply per_perp_in in H14.
apply perp_in_perp_bis in H14.
induction H14.
apply perp_distinct in H14.
intuition.
eapply l12_9 with P A.
apply H4.
apply perp_sym.
eapply perp_col.
auto.
apply H14.
unfold Midpoint in H0.
spliter.
apply bet_col in H0.
Col.
intro.
treat_equalities.
apply l7_2 in H0.
eapply is_midpoint_id in H0.
auto.
intro.
subst D.
assert(C = D').
apply is_midpoint_id.
assumption.
subst D'.
assert(A = B).
eapply symmetric_point_uniqueness.
apply l7_2.
apply H0.
apply l7_2.
assumption.
auto.
prolong E P F E P.
assert(Col C D F).
eapply mid_preserves_col.
2: apply H0.
2:apply H1.
apply H3.
split.
assumption.
Cong.
prolong A E A' A E.
prolong A' P C' A' P.
assert(Midpoint F C C').
eapply symmetry_preserves_midpoint.
apply H0.
split.
apply H7.
Cong.
split.
apply H12.
Cong.
split.
assumption.
Cong.
assert(Per P E A).
eapply perp_in_per.
apply perp_in_comm.
apply perp_perp_in.
apply perp_sym.
eapply perp_col.
assumption.
apply perp_right_comm.
apply H4.
Col.
assert(Cong P C P C').
eapply (cong_transitivity _ _ P A).
unfold Midpoint in H0.
spliter.
Cong.
eapply (cong_transitivity _ _ P A').
unfold Per in H15.
ex_and H15 A''.
assert( A' = A'').
eapply symmetric_point_uniqueness.
split.
apply H10.
Cong.
assumption.
subst A''.
assumption.
Cong.
assert(Per P F C).
unfold Per.
∃ C'.
split.
assumption.
assumption.
apply per_perp_in in H17.
apply perp_in_comm in H17.
apply perp_in_perp_bis in H17.
induction H17.
apply l12_9 with P E.
apply H4.
eapply perp_col.
intro.
subst D.
assert (A = B).
eapply symmetric_point_uniqueness.
apply l7_2.
apply H0.
apply l7_2.
assumption.
auto.
apply perp_sym.
eapply perp_col.
intro.
treat_equalities.
apply perp_distinct in H17.
spliter.
auto.
apply perp_left_comm.
apply H17.
apply bet_col in H7.
Col.
Col.
apply perp_distinct in H17.
spliter.
tauto.
intro.
treat_equalities.
apply perp_distinct in H4.
spliter.
tauto.
intro.
subst C.
assert(F = C').
apply is_midpoint_id .
assumption.
treat_equalities.
assert(A = E).
eapply symmetric_point_uniqueness.
apply l7_2.
apply H0.
split.
apply between_symmetry.
assumption.
Cong.
tauto.
Qed.
Lemma l12_18_a :
∀ A B C D P,
Cong A B C D → Cong B C D A → ¬Col A B C →
B ≠ D → Col A P C → Col B P D →
Par A B C D.
Proof.
intros.
assert(Midpoint P A C ∧ Midpoint P B D) by (apply l7_21; assumption).
spliter.
eapply l12_17.
intro.
subst B.
apply H1.
apply col_trivial_1.
apply H5.
apply H6.
Qed.
Lemma l12_18_b :
∀ A B C D P,
Cong A B C D → Cong B C D A → ¬Col A B C →
B ≠ D → Col A P C → Col B P D →
Par B C D A.
Proof.
intros.
assert(Midpoint P A C ∧ Midpoint P B D) by (apply l7_21; assumption).
eapply l12_18_a.
assumption.
Cong.
intro.
apply H1.
assert(Col B C P).
eapply col_transitivity_1.
apply H2.
Col.
Col.
apply col_permutation_1.
eapply (col_transitivity_1 _ P).
intro.
subst P.
spliter.
apply l7_2 in H5.
apply is_midpoint_id in H5.
subst C.
apply H1.
apply col_trivial_3.
Col.
Col.
intro.
subst C.
apply H1.
apply col_trivial_3.
apply H4.
Col.
Qed.
Lemma l12_18_c :
∀ A B C D P,
Cong A B C D → Cong B C D A → ¬Col A B C →
B ≠ D → Col A P C → Col B P D →
TS B D A C.
Proof.
intros.
assert(Midpoint P A C ∧ Midpoint P B D) by (apply l7_21; assumption).
unfold TS.
repeat split.
intro.
apply H1.
assert(Col A B P).
apply col_permutation_2.
eapply (col_transitivity_1 _ D).
assumption.
Col.
Col.
eapply (col_transitivity_1 _ P).
intro.
subst P.
spliter.
apply is_midpoint_id in H5.
subst C.
apply H1.
apply col_trivial_3.
Col.
Col.
intro.
apply H1.
assert(Col B P C).
eapply (col_transitivity_1 _ D).
assumption.
Col.
Col.
apply col_permutation_1.
eapply (col_transitivity_1 _ P).
intro.
subst P.
spliter.
apply l7_2 in H5.
apply is_midpoint_id in H5.
subst C.
apply H1.
apply col_trivial_3.
Col.
Col.
∃ P.
split.
Col.
spliter.
unfold Midpoint in H5.
tauto.
Qed.
Lemma l12_18_d :
∀ A B C D P,
Cong A B C D → Cong B C D A → ¬Col A B C →
B ≠ D → Col A P C → Col B P D →
TS A C B D.
Proof.
intros.
assert(Midpoint P A C ∧ Midpoint P B D) by (apply l7_21; assumption).
eapply (l12_18_c _ _ _ _ P).
Cong.
Cong.
intro.
apply H1.
assert(Col A B P).
eapply col_permutation_2.
eapply col_transitivity_1.
apply H2.
Col.
Col.
eapply (col_transitivity_1 _ P).
intro.
subst P.
spliter.
apply is_midpoint_id in H5.
subst C.
contradiction.
Col.
Col.
intro.
subst C.
apply H1.
apply col_trivial_3.
Col.
Col.
Qed.
Lemma l12_18 :
∀ A B C D P,
Cong A B C D → Cong B C D A → ¬Col A B C →
B ≠ D → Col A P C → Col B P D →
Par A B C D ∧ Par B C D A ∧ TS B D A C ∧ TS A C B D.
Proof.
intros.
split.
apply (l12_18_a _ _ _ _ P); assumption.
split.
apply (l12_18_b _ _ _ _ P); assumption.
split.
apply (l12_18_c _ _ _ _ P); assumption.
apply (l12_18_d _ _ _ _ P); assumption.
Qed.
Lemma par_two_sides_two_sides :
∀ A B C D,
Par A B C D → TS B D A C →
TS A C B D.
Proof.
intros.
apply par_distincts in H.
spliter.
unfold Par in H.
induction H.
assert(A ≠ C).
intro.
subst C.
unfold Par_strict in H.
spliter.
apply H5.
∃ A.
split; apply col_trivial_1.
unfold TS in ×.
assert (¬ Col A B D).
spliter.
assumption.
spliter.
ex_and H6 T.
repeat split.
intro.
assert(Col T B C).
apply col_permutation_1.
eapply (col_transitivity_1 _ A).
auto.
apply bet_col in H7.
Col.
Col.
apply H5.
apply col_permutation_2.
eapply (col_transitivity_1 _ T).
intro.
treat_equalities.
unfold Par_strict in H.
spliter.
apply H9.
∃ C.
split.
Col.
apply col_trivial_1.
Col.
Col.
intro.
assert(Col T C D).
apply col_permutation_2.
apply (col_transitivity_1 _ A).
auto.
Col.
apply bet_col in H7.
Col.
apply H5.
apply col_permutation_1.
apply (col_transitivity_1 _ T).
intro.
treat_equalities.
unfold Par_strict in H.
spliter.
apply H9.
∃ A.
split.
apply col_trivial_1.
Col.
Col.
Col.
∃ T.
split.
apply bet_col in H7.
Col.
unfold Col in H6.
induction H6.
assert(HH:= outer_pasch C D T A B (between_symmetry _ _ _ H7) (between_symmetry _ _ _ H6)).
ex_and HH X.
unfold Par_strict in H.
spliter.
apply False_ind.
apply H12.
∃ X.
apply bet_col in H8.
apply bet_col in H9.
split; Col.
induction H6.
assert(HH:= outer_pasch A B T C D H7 H6).
ex_and HH X.
apply False_ind.
unfold Par_strict in H.
spliter.
apply H12.
∃ X.
apply bet_col in H8.
apply bet_col in H9.
split; Col.
apply between_symmetry.
assumption.
unfold TS in H0.
spliter.
apply False_ind.
apply H3.
apply col_permutation_1.
eapply (col_transitivity_1 _ C).
auto.
Col.
Col.
Qed.
Lemma par_one_or_two_sides :
∀ A B C D,
Par_strict A B C D →
TS A C B D ∧ TS B D A C ∨ OS A C B D ∧ OS B D A C.
Proof.
intros.
induction(two_sides_dec A C B D).
left.
split.
assumption.
apply par_two_sides_two_sides.
apply par_comm.
unfold Par.
left.
assumption.
assumption.
right.
assert(HH:=H).
unfold Par_strict in H.
spliter.
assert(A ≠ C).
intro.
subst C.
apply H3.
∃ A.
split; Col.
assert(B ≠ D).
intro.
subst D.
apply H3.
∃ B.
split; Col.
split.
apply not_two_sides_one_side.
assumption.
intro.
apply H3.
∃ C.
split; Col.
intro.
apply H3.
∃ A.
split; Col.
assumption.
apply not_two_sides_one_side.
assumption.
intro.
apply H3.
∃ D.
split; Col.
intro.
apply H3.
∃ B.
split; Col.
intro.
apply H0.
apply par_two_sides_two_sides.
left.
assumption.
assumption.
Qed.
Lemma l12_21_b : ∀ A B C D,
TS A C B D →
CongA B A C D C A → Par A B C D.
Proof.
intros.
apply conga_distinct in H0.
spliter.
assert(¬Col A B C).
intro.
unfold TS in H.
spliter.
apply col_permutation_4 in H5.
assert(Col D C A).
eapply col_conga_col.
apply H5.
assumption.
contradiction.
assert(A ≠ B ∧ C ≠ D).
auto.
spliter.
assert(HH:=segment_construction_3 C D A B H7 H6).
ex_and HH D'.
assert(CongA B A C D' C A).
eapply l11_10.
apply H0.
apply out_trivial.
assumption.
apply out_trivial.
assumption.
apply l6_6.
assumption.
apply out_trivial.
assumption.
assert(Cong D' A B C).
eapply cong2_conga_cong.
apply conga_sym.
apply H10.
Cong.
Cong.
assert(TS A C D' B).
eapply l9_5.
apply l9_2.
apply H.
apply col_trivial_3.
assumption.
unfold TS in H12.
spliter.
ex_and H14 M.
assert(B ≠ D').
intro.
treat_equalities.
contradiction.
assert(Midpoint M A C ∧ Midpoint M B D').
apply l7_21.
assumption.
assumption.
Cong.
Cong.
Col.
apply bet_col in H15.
Col.
spliter.
assert(Par A B C D').
eapply l12_17.
assumption.
apply H17.
assumption.
eapply par_col_par.
auto.
apply H19.
apply out_col in H8.
Col.
Qed.
Lemma l12_22_aux :
∀ A B C D P,
P ≠ A → A ≠ C → Bet P A C → OS P A B D →
CongA B A P D C P →
Par A B C D.
Proof.
intros.
assert (P≠C) by (intro; Between).
prolong B A B' B A .
spliter.
assert(CongA P A B C A B').
apply l11_14.
assumption.
assumption.
auto.
assumption.
unfold CongA in H3.
spliter.
auto.
intro.
treat_equalities.
unfold CongA in H3.
tauto.
assert(CongA D C A D C P).
eapply l11_10.
apply conga_refl.
3: apply out_trivial.
unfold CongA in H3.
tauto.
5:apply out_trivial.
auto.
unfold CongA in H3.
tauto.
apply between_symmetry in H1.
apply bet_out in H1.
assumption.
auto.
auto.
apply out_trivial.
unfold CongA in H3.
tauto.
auto.
assert(Par A B' C D).
eapply l12_21_b.
assert(¬Col B P A).
unfold OS in H2.
ex_and H2 T.
unfold TS in H2.
tauto.
assert(TS P A B B').
unfold TS.
repeat split.
assumption.
intro.
apply H9.
apply col_permutation_1.
eapply (col_transitivity_1 _ B').
intro.
treat_equalities.
unfold CongA in H3.
tauto.
apply bet_col in H1.
Col.
Col.
∃ A.
split.
Col.
assumption.
apply l9_2.
eapply l9_8_2.
eapply col_two_sides.
3:apply invert_two_sides.
3: apply H10.
apply bet_col in H1.
Col.
assumption.
eapply col_one_side.
3: apply invert_one_side.
3: apply H2.
apply bet_col in H1.
Col.
assumption.
eapply conga_trans.
apply conga_sym.
apply conga_comm.
apply H7.
eapply conga_trans.
apply H3.
apply conga_sym.
assumption.
apply par_symmetry.
eapply par_col_par.
2: apply par_symmetry.
2:apply H9.
unfold CongA in H3.
spliter.
auto.
apply bet_col in H1.
Col.
Qed.
Lemma l12_22_b :
∀ A B C D P,
Out P A C → OS P A B D → CongA B A P D C P →
Par A B C D.
Proof.
intros.
induction(eq_dec_points A C).
subst C.
unfold Par.
right.
repeat split.
unfold CongA in H1.
spliter.
auto.
unfold CongA in H1.
spliter.
auto.
Col.
apply conga_comm in H1.
apply conga__or_out_ts in H1.
induction H1.
apply out_col in H1.
Col.
apply l9_9 in H1.
contradiction.
unfold Out in H.
spliter.
induction H4.
eapply l12_22_aux.
3:apply H4.
auto.
assumption.
assumption.
assumption.
apply par_symmetry.
eapply l12_22_aux.
3:apply H4.
auto.
auto.
eapply (col_one_side _ A).
apply bet_col in H4.
Col.
auto.
apply one_side_symmetry.
assumption.
apply conga_sym.
assumption.
Qed.
Lemma par_strict_par : ∀ A B C D,
Par_strict A B C D → Par A B C D.
Proof.
intros.
unfold Par.
tauto.
Qed.
Lemma par_strict_distinct : ∀ A B C D,
Par_strict A B C D → A≠B ∧ C≠D.
Proof.
intros.
apply par_strict_par in H.
apply par_distincts.
assumption.
Qed.
Lemma col_par : ∀ A B C,
A ≠ B → B ≠ C →
Col A B C → Par A B B C.
Proof.
intros.
unfold Par.
right.
intuition Col.
Qed.
Lemma acute_col_perp__out : ∀ A B C A',
Acute A B C → Col B C A' → Perp B C A A' → Out B A' C.
Proof.
intros A B C A' HacuteB HBCA' HPerp.
assert(HUn := perp_not_col2 B C A A' HPerp).
destruct HUn as [HNCol1|]; [|contradiction].
assert(HB' := l10_15 B C B A).
destruct HB' as [B' []]; Col.
assert_diffs.
assert(HNCol2 : ¬ Col B' B C ) by (apply per_not_col; Perp).
assert(HNCol3 : ¬ Col B B' A).
{ intro.
apply (nlta A B C).
apply acute_per__lta; auto.
apply (l8_3 B'); Col; Perp.
}
assert(HPars : Par_strict B B' A A').
apply (par_not_col_strict _ _ _ _ A); Col; apply (l12_9 _ _ _ _ B C); Perp.
assert(HNCol4 := par_strict_not_col_4 B B' A A' HPars).
apply (col_one_side_out _ B'); Col.
apply (one_side_transitivity _ _ _ A).
apply l12_6; Par.
apply invert_one_side.
apply in_angle_one_side; Col.
apply l11_24.
apply lea_in_angle; Side.
apply lta_comm.
apply acute_per__lta; Perp.
Qed.
Lemma acute_col_perp__out_1 : ∀ A B C A',
Acute A B C → Col B C A' → Perp B A A A' → Out B A' C.
Proof.
intros A B C A' HAcute HCol HPerp.
destruct (segment_construction A B A B) as [A0 [HA1 HA2]].
destruct (segment_construction C B C B) as [C0 [HC1 HC2]].
assert_diffs.
assert (HNCol : ¬ Col B A A') by (apply per_not_col; Perp).
assert_diffs.
apply l6_2 with C0; auto.
apply not_out_bet.
ColR.
intro.
apply (not_bet_and_out A B A0); split; trivial.
apply acute_col_perp__out with A'; Col.
apply acute_sym, (acute_conga__acute A B C); auto.
apply l11_14; auto.
apply between_symmetry, l6_2 with C0; Between.
apply l6_6; assumption.
apply perp_col with A; Col; Perp.
Qed.
Lemma conga_inangle_per2__inangle : ∀ A B C P T,
Per A B C → InAngle T A B C → CongA P B A P B C → Per B P T →
InAngle P A B C.
Proof.
intros A B C P T HPer HInangle HConga HPerP.
destruct (eq_dec_points P T).
subst; apply HInangle.
assert_diffs.
destruct (angle_bisector A B C) as [P' [HInangle' HConga']]; auto.
assert_diffs.
assert (HAcute : Acute P' B A).
apply acute_sym, conga_inangle_per__acute with C; trivial.
apply l11_25 with P' A C; try (apply out_trivial); auto.
assert (HNCol1 : ¬ Col A B C) by (apply per_not_col; auto).
assert (HCol : Col B P P').
apply conga2__col with A C; trivial; intro; apply HNCol1; Col.
apply (acute_col_perp__out T); Col.
{ apply acute_lea_acute with P' B A; trivial.
assert (HNCol2 : ¬ Col P' B A).
intro.
assert (Col P' B C) by (apply (col_conga_col P' B A); assumption).
apply HNCol1; ColR.
destruct (Col_dec T B P'); [|assert_diffs; destruct (one_or_two_sides B P' A T); Col].
- apply l11_31_1; auto.
apply col_one_side_out with A; Col.
apply invert_one_side, inangle_one_side with C; Col.
assert (¬ Col B P T) by (apply per_not_col; auto).
intro; assert_diffs; apply HNCol2; ColR.
- apply (l11_30 P' B T P' B C); CongA.
∃ T; split; CongA.
apply l11_24 in HInangle; apply l11_24 in HInangle'.
destruct (Col_dec B C T).
apply out341__inangle; auto.
apply col_in_angle_out with A; Col.
intro; apply HNCol1; Col.
assert (HNCol3 : ¬ Col P' B C) by (apply (ncol_conga_ncol P' B A); assumption).
apply os2__inangle.
∃ A; split; Side.
apply invert_two_sides, in_angle_two_sides; Col.
apply invert_one_side, inangle_one_side with A; Col.
- ∃ T; split; CongA.
destruct (Col_dec B A T).
apply out341__inangle; auto.
apply col_in_angle_out with C; Col.
intro; apply HNCol1; Col.
apply os2__inangle; trivial.
apply invert_one_side, inangle_one_side with C; Col.
}
apply perp_col with P; Col.
apply perp_right_comm, per_perp; auto.
Qed.
End T12_2'.
Hint Resolve col_par par_strict_par : par.
Hint Resolve l12_6 pars__os3412 : side.
Section T12_3.
Context `{TnEQD:Tarski_neutral_dimensionless_with_decidable_point_equality}.
Lemma perp_not_par : ∀ A B X Y, Perp A B X Y → ¬ Par A B X Y.
Proof.
intros.
assert(HH:=H).
unfold Perp in HH.
ex_and HH P.
intro.
induction H1.
apply H1.
∃ P.
apply perp_in_col in H0.
spliter.
split; Col.
spliter.
induction(eq_dec_points A Y).
subst Y.
assert(P = A).
eapply (l8_14_2_1b P A B X A); Col.
subst P.
apply perp_in_comm in H0.
apply perp_in_per in H0.
assert(¬ Col B A X).
eapply(per_not_col).
auto.
auto.
assumption.
apply H5.
Col.
apply(l8_16_1 A B X A Y); Col.
ColR.
ColR.
Qed.
Lemma cong_conga_perp : ∀ A B C P, TS B P A C → Cong A B C B → CongA A B P C B P → Perp A C B P.
Proof.
intros.
assert(HH:=H).
unfold TS in HH.
assert (¬ Col A B P).
spliter.
assumption.
spliter.
ex_and H5 T.
assert(B ≠ P).
intro.
subst P.
apply H3.
Col.
assert(A ≠ B).
intro.
subst B.
apply H3.
Col.
assert(C ≠ B).
intro.
subst C.
apply H4.
Col.
assert(A ≠ C).
intro.
subst C.
assert(OS B P A A).
apply one_side_reflexivity.
assumption.
apply l9_9 in H.
contradiction.
induction (bet_dec A B C).
assert(Per P B A).
apply(l11_18_2 P B A C); auto.
apply conga_comm.
assumption.
eapply (col_per_perp _ _ _ C) in H12; auto.
apply perp_right_comm.
assumption.
apply bet_col in H11.
Col.
assert(B ≠ T).
intro.
subst T.
contradiction.
assert(CongA T B A T B C).
induction H5.
eapply (l11_13 P _ _ P); Between.
apply conga_comm.
apply H1.
assert(Out B P T).
repeat split; auto.
induction H5.
left.
Between.
right.
Between.
apply conga_comm.
eapply (out_conga A _ P C _ P); auto.
apply out_trivial.
auto.
apply out_trivial.
auto.
assert(Cong T A T C).
apply (cong2_conga_cong T B A T B C); Cong.
assert(Midpoint T A C).
split; Cong.
assert(Per B T A).
unfold Per.
∃ C.
split; Cong.
eapply (col_per_perp _ _ _ C) in H16; auto.
apply perp_sym.
apply (perp_col _ T); Col.
Perp.
intro.
subst T.
apply is_midpoint_id in H15.
contradiction.
intro.
subst T.
apply l7_2 in H15.
apply is_midpoint_id in H15.
apply H10.
auto.
apply bet_col in H6.
Col.
Qed.
Lemma perp_inter_exists : ∀ A B C D, Perp A B C D → ∃ P, Col A B P ∧ Col C D P.
Proof.
intros A B C D HPerp.
destruct HPerp as [P [_ [_ [HCol1 [HCol2]]]]].
∃ P; split; Col.
Qed.
Lemma perp_inter_perp_in : ∀ A B C D, Perp A B C D → ∃ P, Col A B P ∧ Col C D P ∧ Perp_at P A B C D.
Proof.
intros.
assert(HH:=perp_inter_exists A B C D H).
ex_and HH P.
∃ P.
split.
Col.
split.
Col.
apply l8_14_2_1b_bis; Col.
Qed.
End T12_3.