Library GeoCoq.Elements.OriginalProofs.lemma_RTsymmetric
Require Export GeoCoq.Elements.OriginalProofs.lemma_supplementsymmetric.
Require Export GeoCoq.Elements.OriginalProofs.lemma_ABCequalsCBA.
Require Export GeoCoq.Elements.OriginalProofs.lemma_equalanglestransitive.
Section Euclid.
Context `{Ax:euclidean_neutral}.
Lemma lemma_RTsymmetric :
∀ A B C D E F,
RT A B C D E F →
RT D E F A B C.
Proof.
intros.
let Tf:=fresh in
assert (Tf:∃ a b c d e, (Supp a b c d e ∧ CongA A B C a b c ∧ CongA D E F d b e)) by (conclude_def RT );destruct Tf as [a[b[c[d[e]]]]];spliter.
assert (Supp e b d c a) by (conclude lemma_supplementsymmetric).
assert (nCol d b e) by (conclude lemma_equalanglesNC).
assert (CongA d b e e b d) by (conclude lemma_ABCequalsCBA).
assert (nCol a b c) by (conclude lemma_equalanglesNC).
assert (CongA a b c c b a) by (conclude lemma_ABCequalsCBA).
assert (CongA D E F e b d) by (conclude lemma_equalanglestransitive).
assert (CongA A B C c b a) by (conclude lemma_equalanglestransitive).
assert (RT D E F A B C) by (conclude_def RT ).
close.
Qed.
End Euclid.
Require Export GeoCoq.Elements.OriginalProofs.lemma_ABCequalsCBA.
Require Export GeoCoq.Elements.OriginalProofs.lemma_equalanglestransitive.
Section Euclid.
Context `{Ax:euclidean_neutral}.
Lemma lemma_RTsymmetric :
∀ A B C D E F,
RT A B C D E F →
RT D E F A B C.
Proof.
intros.
let Tf:=fresh in
assert (Tf:∃ a b c d e, (Supp a b c d e ∧ CongA A B C a b c ∧ CongA D E F d b e)) by (conclude_def RT );destruct Tf as [a[b[c[d[e]]]]];spliter.
assert (Supp e b d c a) by (conclude lemma_supplementsymmetric).
assert (nCol d b e) by (conclude lemma_equalanglesNC).
assert (CongA d b e e b d) by (conclude lemma_ABCequalsCBA).
assert (nCol a b c) by (conclude lemma_equalanglesNC).
assert (CongA a b c c b a) by (conclude lemma_ABCequalsCBA).
assert (CongA D E F e b d) by (conclude lemma_equalanglestransitive).
assert (CongA A B C c b a) by (conclude lemma_equalanglestransitive).
assert (RT D E F A B C) by (conclude_def RT ).
close.
Qed.
End Euclid.