Library GeoCoq.Elements.OriginalProofs.lemma_supplementsymmetric
Require Export GeoCoq.Elements.OriginalProofs.lemma_ray5.
Section Euclid.
Context `{Ax1:euclidean_neutral}.
Lemma lemma_supplementsymmetric :
∀ A B C D E,
Supp A B C E D →
Supp D B E C A.
Proof.
intros.
assert ((Out B C E ∧ BetS A B D)) by (conclude_def Supp ).
assert (BetS D B A) by (conclude axiom_betweennesssymmetry).
assert (Out B E C) by (conclude lemma_ray5).
assert (Supp D B E C A) by (conclude_def Supp ).
close.
Qed.
End Euclid.
Section Euclid.
Context `{Ax1:euclidean_neutral}.
Lemma lemma_supplementsymmetric :
∀ A B C D E,
Supp A B C E D →
Supp D B E C A.
Proof.
intros.
assert ((Out B C E ∧ BetS A B D)) by (conclude_def Supp ).
assert (BetS D B A) by (conclude axiom_betweennesssymmetry).
assert (Out B E C) by (conclude lemma_ray5).
assert (Supp D B E C A) by (conclude_def Supp ).
close.
Qed.
End Euclid.