Library GeoCoq.Elements.OriginalProofs.lemma_ray5
Require Export GeoCoq.Elements.OriginalProofs.lemma_ray1.
Require Export GeoCoq.Elements.OriginalProofs.lemma_raystrict.
Require Export GeoCoq.Elements.OriginalProofs.lemma_ray4.
Section Euclid.
Context `{Ax:euclidean_neutral}.
Lemma lemma_ray5 :
∀ A B C,
Out A B C →
Out A C B.
Proof.
intros.
assert ((BetS A C B ∨ eq B C ∨ BetS A B C)) by (conclude lemma_ray1).
assert (neq A C) by (conclude lemma_raystrict).
assert (Out A C B) by (conclude lemma_ray4).
close.
Qed.
End Euclid.
Require Export GeoCoq.Elements.OriginalProofs.lemma_raystrict.
Require Export GeoCoq.Elements.OriginalProofs.lemma_ray4.
Section Euclid.
Context `{Ax:euclidean_neutral}.
Lemma lemma_ray5 :
∀ A B C,
Out A B C →
Out A C B.
Proof.
intros.
assert ((BetS A C B ∨ eq B C ∨ BetS A B C)) by (conclude lemma_ray1).
assert (neq A C) by (conclude lemma_raystrict).
assert (Out A C B) by (conclude lemma_ray4).
close.
Qed.
End Euclid.