Library GeoCoq.Elements.OriginalProofs.lemma_collinearparallel

Require Export GeoCoq.Elements.OriginalProofs.lemma_collinear4.

Section Euclid.

Context `{Ax:euclidean_neutral}.

Lemma lemma_collinearparallel :
    A B C c d,
   Par A B c d Col c d C neq C d
   Par A B C d.
Proof.
intros.
let Tf:=fresh in
assert (Tf: R a b p q, (neq A B neq c d Col A B a Col A B b neq a b Col c d p Col c d q neq p q ¬ Meet A B c d BetS a R q BetS p R b)) by (conclude_def Par );destruct Tf as [R[a[b[p[q]]]]];spliter.
assert (neq d C) by (conclude lemma_inequalitysymmetric).
assert (Col d C p) by (conclude lemma_collinear4).
assert (Col C d p) by (forward_using lemma_collinearorder).
assert (Col d C q) by (conclude lemma_collinear4).
assert (Col C d q) by (forward_using lemma_collinearorder).
assert (¬ Meet A B C d).
 {
 intro.
 let Tf:=fresh in
 assert (Tf: E, (neq A B neq C d Col A B E Col C d E)) by (conclude_def Meet );destruct Tf as [E];spliter.
 assert (Col C d c) by (forward_using lemma_collinearorder).
 assert (Col d E c) by (conclude lemma_collinear4).
 assert (Col c d E) by (forward_using lemma_collinearorder).
 assert (Meet A B c d) by (conclude_def Meet ).
 contradict.
 }
assert (Par A B C d) by (conclude_def Par ).
close.
Qed.

End Euclid.