Library GeoCoq.Elements.OriginalProofs.lemma_extensionunique
Require Export GeoCoq.Elements.OriginalProofs.lemma_betweennotequal.
Require Export GeoCoq.Elements.OriginalProofs.lemma_congruencesymmetric.
Section Euclid.
Context `{Ax:euclidean_neutral}.
Lemma lemma_extensionunique :
∀ A B E F,
BetS A B E → BetS A B F → Cong B E B F →
eq E F.
Proof.
intros.
assert (neq A B) by (forward_using lemma_betweennotequal).
assert (Cong B E B E) by (conclude cn_congruencereflexive).
assert (Cong B F B E) by (conclude lemma_congruencesymmetric).
assert (Cong A E A E) by (conclude cn_congruencereflexive).
assert (Cong A B A B) by (conclude cn_congruencereflexive).
assert (Cong B E B F) by (conclude lemma_congruencesymmetric).
assert (Cong E E E F) by (conclude axiom_5_line).
assert (Cong E F E E) by (conclude lemma_congruencesymmetric).
assert (eq E F) by (conclude axiom_nullsegment1).
close.
Qed.
End Euclid.
Require Export GeoCoq.Elements.OriginalProofs.lemma_congruencesymmetric.
Section Euclid.
Context `{Ax:euclidean_neutral}.
Lemma lemma_extensionunique :
∀ A B E F,
BetS A B E → BetS A B F → Cong B E B F →
eq E F.
Proof.
intros.
assert (neq A B) by (forward_using lemma_betweennotequal).
assert (Cong B E B E) by (conclude cn_congruencereflexive).
assert (Cong B F B E) by (conclude lemma_congruencesymmetric).
assert (Cong A E A E) by (conclude cn_congruencereflexive).
assert (Cong A B A B) by (conclude cn_congruencereflexive).
assert (Cong B E B F) by (conclude lemma_congruencesymmetric).
assert (Cong E E E F) by (conclude axiom_5_line).
assert (Cong E F E E) by (conclude lemma_congruencesymmetric).
assert (eq E F) by (conclude axiom_nullsegment1).
close.
Qed.
End Euclid.