Library GeoCoq.Elements.OriginalProofs.lemma_lessthancongruence2
Require Export GeoCoq.Elements.OriginalProofs.lemma_congruencetransitive.
Section Euclid.
Context `{Ax1:euclidean_neutral}.
Lemma lemma_lessthancongruence2 :
∀ A B C D E F,
Lt A B C D → Cong A B E F →
Lt E F C D.
Proof.
intros.
let Tf:=fresh in
assert (Tf:∃ G, (BetS C G D ∧ Cong C G A B)) by (conclude_def Lt );destruct Tf as [G];spliter.
assert (Cong C G E F) by (conclude lemma_congruencetransitive).
assert (Lt E F C D) by (conclude_def Lt ).
close.
Qed.
End Euclid.
Section Euclid.
Context `{Ax1:euclidean_neutral}.
Lemma lemma_lessthancongruence2 :
∀ A B C D E F,
Lt A B C D → Cong A B E F →
Lt E F C D.
Proof.
intros.
let Tf:=fresh in
assert (Tf:∃ G, (BetS C G D ∧ Cong C G A B)) by (conclude_def Lt );destruct Tf as [G];spliter.
assert (Cong C G E F) by (conclude lemma_congruencetransitive).
assert (Lt E F C D) by (conclude_def Lt ).
close.
Qed.
End Euclid.