Library GeoCoq.Elements.OriginalProofs.lemma_oppositesideflip
Require Export GeoCoq.Elements.OriginalProofs.lemma_NCorder.
Section Euclid.
Context `{Ax:euclidean_neutral}.
Lemma lemma_oppositesideflip :
∀ A B P Q,
TS P A B Q →
TS P B A Q.
Proof.
intros.
let Tf:=fresh in
assert (Tf:∃ r, (BetS P r Q ∧ Col A B r ∧ nCol A B P)) by (conclude_def TS );destruct Tf as [r];spliter.
assert (nCol B A P) by (forward_using lemma_NCorder).
assert (Col B A r) by (forward_using lemma_collinearorder).
assert (TS P B A Q) by (conclude_def TS ).
close.
Qed.
End Euclid.
Section Euclid.
Context `{Ax:euclidean_neutral}.
Lemma lemma_oppositesideflip :
∀ A B P Q,
TS P A B Q →
TS P B A Q.
Proof.
intros.
let Tf:=fresh in
assert (Tf:∃ r, (BetS P r Q ∧ Col A B r ∧ nCol A B P)) by (conclude_def TS );destruct Tf as [r];spliter.
assert (nCol B A P) by (forward_using lemma_NCorder).
assert (Col B A r) by (forward_using lemma_collinearorder).
assert (TS P B A Q) by (conclude_def TS ).
close.
Qed.
End Euclid.