Library GeoCoq.Elements.OriginalProofs.lemma_ray2
Require Export GeoCoq.Elements.OriginalProofs.lemma_betweennotequal.
Section Euclid.
Context `{Ax:euclidean_neutral}.
Lemma lemma_ray2 :
∀ A B C,
Out A B C →
neq A B.
Proof.
intros.
let Tf:=fresh in
assert (Tf:∃ E, (BetS E A C ∧ BetS E A B)) by (conclude_def Out );destruct Tf as [E];spliter.
assert (neq A B) by (forward_using lemma_betweennotequal).
close.
Qed.
End Euclid.
Section Euclid.
Context `{Ax:euclidean_neutral}.
Lemma lemma_ray2 :
∀ A B C,
Out A B C →
neq A B.
Proof.
intros.
let Tf:=fresh in
assert (Tf:∃ E, (BetS E A C ∧ BetS E A B)) by (conclude_def Out );destruct Tf as [E];spliter.
assert (neq A B) by (forward_using lemma_betweennotequal).
close.
Qed.
End Euclid.