Library GeoCoq.Elements.OriginalProofs.proposition_03
Require Export GeoCoq.Elements.OriginalProofs.lemma_lessthancongruence.
Section Euclid.
Context `{Ax:euclidean_neutral_ruler_compass}.
Lemma proposition_03 :
∀ A B C D E F,
neq A B → neq C D → Lt C D A B → Cong E F A B →
∃ X, BetS E X F ∧ Cong E X C D.
Proof.
intros.
assert (Cong A B E F) by (conclude lemma_congruencesymmetric).
assert (Lt C D E F) by (conclude lemma_lessthancongruence).
let Tf:=fresh in
assert (Tf:∃ G, (BetS E G F ∧ Cong E G C D)) by (conclude_def Lt );destruct Tf as [G];spliter.
close.
Qed.
End Euclid.
Section Euclid.
Context `{Ax:euclidean_neutral_ruler_compass}.
Lemma proposition_03 :
∀ A B C D E F,
neq A B → neq C D → Lt C D A B → Cong E F A B →
∃ X, BetS E X F ∧ Cong E X C D.
Proof.
intros.
assert (Cong A B E F) by (conclude lemma_congruencesymmetric).
assert (Lt C D E F) by (conclude lemma_lessthancongruence).
let Tf:=fresh in
assert (Tf:∃ G, (BetS E G F ∧ Cong E G C D)) by (conclude_def Lt );destruct Tf as [G];spliter.
close.
Qed.
End Euclid.