Library GeoCoq.Elements.OriginalProofs.proposition_26B
Require Export GeoCoq.Elements.OriginalProofs.lemma_26helper.
Require Export GeoCoq.Elements.OriginalProofs.lemma_trichotomy1.
Section Euclid.
Context `{Ax:euclidean_neutral_ruler_compass}.
Lemma proposition_26B :
∀ A B C D E F,
Triangle A B C → Triangle D E F → CongA A B C D E F → CongA B C A E F D → Cong A B D E →
Cong B C E F ∧ Cong A C D F ∧ CongA B A C E D F.
Proof.
intros.
assert (¬ Lt E F B C) by (conclude lemma_26helper).
assert (CongA D E F A B C) by (conclude lemma_equalanglessymmetric).
assert (CongA E F D B C A) by (conclude lemma_equalanglessymmetric).
assert (Cong D E A B) by (conclude lemma_congruencesymmetric).
assert (¬ Lt B C E F) by (conclude lemma_26helper).
assert (¬ eq B C).
{
intro.
assert (Col A B C) by (conclude_def Col ).
assert (nCol A B C) by (conclude_def Triangle ).
contradict.
}
assert (¬ eq E F).
{
intro.
assert (Col D E F) by (conclude_def Col ).
assert (nCol D E F) by (conclude_def Triangle ).
contradict.
}
assert (Cong B C E F) by (conclude lemma_trichotomy1).
assert (Cong B A E D) by (forward_using lemma_congruenceflip).
assert ((Cong A C D F ∧ CongA B A C E D F ∧ CongA B C A E F D)) by (conclude proposition_04).
close.
Qed.
End Euclid.
Require Export GeoCoq.Elements.OriginalProofs.lemma_trichotomy1.
Section Euclid.
Context `{Ax:euclidean_neutral_ruler_compass}.
Lemma proposition_26B :
∀ A B C D E F,
Triangle A B C → Triangle D E F → CongA A B C D E F → CongA B C A E F D → Cong A B D E →
Cong B C E F ∧ Cong A C D F ∧ CongA B A C E D F.
Proof.
intros.
assert (¬ Lt E F B C) by (conclude lemma_26helper).
assert (CongA D E F A B C) by (conclude lemma_equalanglessymmetric).
assert (CongA E F D B C A) by (conclude lemma_equalanglessymmetric).
assert (Cong D E A B) by (conclude lemma_congruencesymmetric).
assert (¬ Lt B C E F) by (conclude lemma_26helper).
assert (¬ eq B C).
{
intro.
assert (Col A B C) by (conclude_def Col ).
assert (nCol A B C) by (conclude_def Triangle ).
contradict.
}
assert (¬ eq E F).
{
intro.
assert (Col D E F) by (conclude_def Col ).
assert (nCol D E F) by (conclude_def Triangle ).
contradict.
}
assert (Cong B C E F) by (conclude lemma_trichotomy1).
assert (Cong B A E D) by (forward_using lemma_congruenceflip).
assert ((Cong A C D F ∧ CongA B A C E D F ∧ CongA B C A E F D)) by (conclude proposition_04).
close.
Qed.
End Euclid.