Library GeoCoq.Highschool.midpoint_thales
Require Export GeoCoq.Tarski_dev.Annexes.midpoint_theorems.
Section T_42.
Context `{TE:Tarski_2D_euclidean}.
Lemma midpoint_thales : ∀ O A B C : Tpoint,
¬ Col A B C →
Midpoint O A B →
Cong O A O C →
Per A C B.
Proof.
intros.
Name X the midpoint of C and A.
assert (Par_strict O X B C)
by perm_apply (triangle_mid_par_strict_cong_simp C B A O X).
assert(Per O X A)
by (∃ C;split;finish).
assert_diffs.
assert_cols.
assert(Hid2 : Perp O X C A)
by perm_apply (col_per_perp O X A C).
assert (Perp B C C A).
apply (par_perp_perp O X B C C A);finish.
apply perp_per_1;Perp.
Qed.
Lemma midpoint_thales_reci :
∀ a b c o: Tpoint,
Per a c b →
Midpoint o a b →
Cong o a o b ∧ Cong o b o c.
Proof.
intros.
induction (Col_dec a b c).
induction (l8_9 a c b H);
treat_equalities;assert_congs_perm;try split;finish.
assert_diffs.
assert_congs_perm.
split.
Cong.
assert(Hmid := midpoint_existence a c).
destruct Hmid.
assert(Hpar : Par c b x o).
apply (triangle_mid_par c b a o x);finish.
assert(Hper : Perp c b c a)
by (apply perp_left_comm;apply per_perp;Perp).
assert(HH := par_perp_perp c b x o c a Hpar Hper).
assert(Hper2 : Perp c x o x).
apply (perp_col c a o x x).
assert_diffs.
finish.
Perp.
assert_cols;Col.
assert_diffs.
assert (Per o x c)
by (apply perp_per_2;Perp).
unfold Per in H8.
destruct H8.
spliter.
apply l7_2 in H8.
assert(HmidU := l7_9 a x0 x c H2 H8).
subst.
unfold Midpoint in H2.
spliter.
eCong.
Qed.
End T_42.