Library GeoCoq.Meta_theory.Parallel_postulates.alternate_interior_angles_triangle
Require Import GeoCoq.Axioms.parallel_postulates.
Require Import GeoCoq.Tarski_dev.Annexes.suma.
Require Import GeoCoq.Tarski_dev.Ch12_parallel.
Section alternate_interior_angles_postulate_triangle.
Context `{T2D:Tarski_2D}.
Lemma alternate_interior__triangle :
alternate_interior_angles_postulate →
triangle_postulate.
Proof.
intros AIA A B C D E F HTrisuma.
elim(Col_dec A B C); [intro; apply (col_trisuma__bet A B C); auto|intro HNCol].
destruct(ex_conga_ts B C A C B A) as [B1 [HConga HTS]]; Col.
assert (HPar : Par A C B B1)
by (apply par_left_comm, par_symmetry, l12_21_b; Side; CongA).
apply (par_not_col_strict _ _ _ _ B) in HPar; Col.
assert (HNCol1 : ¬ Col C B B1) by (apply (par_not_col A C); Col).
assert (HNCol2 : ¬ Col A B B1) by (apply (par_not_col A C); Col).
destruct (symmetric_point_construction B1 B) as [B2 [HBet HCong]]; assert_diffs.
assert (HTS1 : TS B A B1 B2)
by (repeat split; Col; [intro; apply HNCol2; ColR|∃ B; Col]).
assert (HTS2 : TS B A C B2)
by (apply (l9_8_2 _ _ B1); auto; apply os_ts1324__os; Side).
apply (bet_conga_bet B1 B B2); auto.
destruct HTrisuma as [D1 [E1 [F1 []]]].
apply (suma2__conga D1 E1 F1 C A B); auto.
assert (CongA A B B2 C A B).
{
apply conga_left_comm, AIA; Side.
apply par_symmetry, (par_col_par _ _ _ B1); Col; Par.
}
apply (conga3_suma__suma B1 B A A B B2 B1 B B2); try (apply conga_refl); auto;
[∃ B2; repeat (split; CongA); apply l9_9; auto|].
apply (suma2__conga A B C B C A); auto.
apply (conga3_suma__suma A B C C B B1 A B B1); CongA.
∃ B1; repeat (split; CongA); apply l9_9; Side.
Qed.
End alternate_interior_angles_postulate_triangle.
Require Import GeoCoq.Tarski_dev.Annexes.suma.
Require Import GeoCoq.Tarski_dev.Ch12_parallel.
Section alternate_interior_angles_postulate_triangle.
Context `{T2D:Tarski_2D}.
Lemma alternate_interior__triangle :
alternate_interior_angles_postulate →
triangle_postulate.
Proof.
intros AIA A B C D E F HTrisuma.
elim(Col_dec A B C); [intro; apply (col_trisuma__bet A B C); auto|intro HNCol].
destruct(ex_conga_ts B C A C B A) as [B1 [HConga HTS]]; Col.
assert (HPar : Par A C B B1)
by (apply par_left_comm, par_symmetry, l12_21_b; Side; CongA).
apply (par_not_col_strict _ _ _ _ B) in HPar; Col.
assert (HNCol1 : ¬ Col C B B1) by (apply (par_not_col A C); Col).
assert (HNCol2 : ¬ Col A B B1) by (apply (par_not_col A C); Col).
destruct (symmetric_point_construction B1 B) as [B2 [HBet HCong]]; assert_diffs.
assert (HTS1 : TS B A B1 B2)
by (repeat split; Col; [intro; apply HNCol2; ColR|∃ B; Col]).
assert (HTS2 : TS B A C B2)
by (apply (l9_8_2 _ _ B1); auto; apply os_ts1324__os; Side).
apply (bet_conga_bet B1 B B2); auto.
destruct HTrisuma as [D1 [E1 [F1 []]]].
apply (suma2__conga D1 E1 F1 C A B); auto.
assert (CongA A B B2 C A B).
{
apply conga_left_comm, AIA; Side.
apply par_symmetry, (par_col_par _ _ _ B1); Col; Par.
}
apply (conga3_suma__suma B1 B A A B B2 B1 B B2); try (apply conga_refl); auto;
[∃ B2; repeat (split; CongA); apply l9_9; auto|].
apply (suma2__conga A B C B C A); auto.
apply (conga3_suma__suma A B C C B B1 A B B1); CongA.
∃ B1; repeat (split; CongA); apply l9_9; Side.
Qed.
End alternate_interior_angles_postulate_triangle.