Library GeoCoq.Meta_theory.Parallel_postulates.proclus_SPP
Require Import GeoCoq.Axioms.parallel_postulates.
Require Import GeoCoq.Tarski_dev.Ch12_parallel.
Section proclus_SPP.
Context `{T2D:Tarski_2D}.
Lemma proclus_s_postulate_implies_strong_parallel_postulate :
proclus_postulate → SPP.
Proof.
intros HP P Q R S T U HPTQ HRTS HNC HCop HCong1 Hcong2.
destruct (HP P R Q S P U) as [I [HCol1 HCol2]]; try ∃ I; Col.
apply l12_17 with T; assert_diffs; Col; split; Cong; unfold BetS in *; spliter; Between.
Qed.
End proclus_SPP.
Require Import GeoCoq.Tarski_dev.Ch12_parallel.
Section proclus_SPP.
Context `{T2D:Tarski_2D}.
Lemma proclus_s_postulate_implies_strong_parallel_postulate :
proclus_postulate → SPP.
Proof.
intros HP P Q R S T U HPTQ HRTS HNC HCop HCong1 Hcong2.
destruct (HP P R Q S P U) as [I [HCol1 HCol2]]; try ∃ I; Col.
apply l12_17 with T; assert_diffs; Col; split; Cong; unfold BetS in *; spliter; Between.
Qed.
End proclus_SPP.