Library GeoCoq.Elements.OriginalProofs.proposition_05b
Require Export GeoCoq.Elements.OriginalProofs.proposition_05.
Require Export GeoCoq.Elements.OriginalProofs.lemma_equalanglesNC.
Require Export GeoCoq.Elements.OriginalProofs.lemma_supplements.
Section Euclid.
Context `{Ax:euclidean_neutral_ruler_compass}.
Lemma proposition_05b :
∀ A B C F G,
isosceles A B C → BetS A B F → BetS A C G →
CongA C B F B C G.
Proof.
intros.
assert (CongA A B C A C B) by (conclude proposition_05).
assert (eq C C) by (conclude cn_equalityreflexive).
assert (nCol A C B) by (conclude lemma_equalanglesNC).
assert (¬ eq B C).
{
intro.
assert (Col A B C) by (conclude_def Col ).
assert (Col A C B) by (forward_using lemma_collinearorder).
contradict.
}
assert (neq C B) by (conclude lemma_inequalitysymmetric).
assert (Out B C C) by (conclude lemma_ray4).
assert (Supp A B C C F) by (conclude_def Supp ).
assert (eq B B) by (conclude cn_equalityreflexive).
assert (Out C B B) by (conclude lemma_ray4).
assert (Supp A C B B G) by (conclude_def Supp ).
assert (CongA C B F B C G) by (conclude lemma_supplements).
close.
Qed.
End Euclid.
Require Export GeoCoq.Elements.OriginalProofs.lemma_equalanglesNC.
Require Export GeoCoq.Elements.OriginalProofs.lemma_supplements.
Section Euclid.
Context `{Ax:euclidean_neutral_ruler_compass}.
Lemma proposition_05b :
∀ A B C F G,
isosceles A B C → BetS A B F → BetS A C G →
CongA C B F B C G.
Proof.
intros.
assert (CongA A B C A C B) by (conclude proposition_05).
assert (eq C C) by (conclude cn_equalityreflexive).
assert (nCol A C B) by (conclude lemma_equalanglesNC).
assert (¬ eq B C).
{
intro.
assert (Col A B C) by (conclude_def Col ).
assert (Col A C B) by (forward_using lemma_collinearorder).
contradict.
}
assert (neq C B) by (conclude lemma_inequalitysymmetric).
assert (Out B C C) by (conclude lemma_ray4).
assert (Supp A B C C F) by (conclude_def Supp ).
assert (eq B B) by (conclude cn_equalityreflexive).
assert (Out C B B) by (conclude lemma_ray4).
assert (Supp A C B B G) by (conclude_def Supp ).
assert (CongA C B F B C G) by (conclude lemma_supplements).
close.
Qed.
End Euclid.