Library GeoCoq.Elements.OriginalProofs.proposition_25

Require Export GeoCoq.Elements.OriginalProofs.proposition_24.
Require Export GeoCoq.Elements.OriginalProofs.lemma_angletrichotomy2.

Section Euclid.

Context `{Ax:euclidean_neutral_ruler_compass}.

Lemma proposition_25 :
    A B C D E F,
   Triangle A B C Triangle D E F Cong A B D E Cong A C D F Lt E F B C
   LtA E D F B A C.
Proof.
intros.
assert (Cong D E A B) by (conclude lemma_congruencesymmetric).
assert (Cong D F A C) by (conclude lemma_congruencesymmetric).
assert (¬ LtA B A C E D F).
 {
 intro.
 assert (Lt B C E F) by (conclude proposition_24).
 assert (¬ Lt E F B C) by (conclude lemma_trichotomy2).
 contradict.
 }
assert (nCol A B C) by (conclude_def Triangle ).
assert (¬ Col B A C).
 {
 intro.
 assert (Col A B C) by (forward_using lemma_collinearorder).
 contradict.
 }
assert (Triangle B A C) by (conclude_def Triangle ).
assert (nCol D E F) by (conclude_def Triangle ).
assert (¬ Col E D F).
 {
 intro.
 assert (Col D E F) by (forward_using lemma_collinearorder).
 contradict.
 }
assert (Triangle E D F) by (conclude_def Triangle ).
assert (¬ CongA E D F B A C).
 {
 intro.
 assert (CongA B A C E D F) by (conclude lemma_equalanglessymmetric).
 assert (Cong B C E F) by (conclude proposition_04).
 assert (Cong E F B C) by (conclude lemma_congruencesymmetric).
 assert (Lt B C B C) by (conclude lemma_lessthancongruence2).
 assert (¬ Lt B C B C) by (conclude lemma_trichotomy2).
 contradict.
 }
assert (LtA E D F B A C) by (conclude lemma_angletrichotomy2).
close.
Qed.

End Euclid.